Pull to refresh

Что такое суперсимметрия?

Reading time 13 min
Views 8.8K
Большой адронный коллайдер (LHC) уже начал свою работу. Его запуск вызвал значительный интерес и сопровождался большим количеством разнообразных и, порой, антинаучных слухов и спекуляций.

Одной из важных целей работы LHC является проверка суперсимметричных моделей. Суперсимметрия как раз является областью моей научной деятельности, и я решил в научно-популярной форме попытаться рассказать, что же это такое.

Я остановлюсь в этой статье на современных теориях физики элементарных частиц, на некоторых идеях и следствиях этих теорий. Среди рассмотренных тем следующие:
  • Стандартная модель фундаментальных взаимодействий (описывает практически все экспериментальные данные в физике элементарных частиц),
  • ее достоинства и недостатки,
  • идея суперсимметрии,
  • решение многих проблем Стандартной модели при ее суперсимметричном обобщении,
  • некоторые особенности минимальной суперсимметричной Стандартной модели (МССМ),
  • экспериментальный статус суперсимметрии.
Я постарался вести рассказ максимально популярно, поэтому пришлось отказаться от математической строгости. Однако кое-где предполагается, что хабралюди, все-таки, еще помнят школьную математику и физику. Без этого было бы затруднительно, если вообще возможно, изложить часть понятий и идей.


Теоретические основы физики элементарных частиц


Физика элементарных частиц — одна из немногих областей человеческого знания, где удалось проникнуть глубже всего в тайны материи и объяснить ее свойства. До сих пор сокращение числа законов, описывающих мир, было одной из основных тенденций при построении научных теорий. При этом главной целью всегда оставалось и остается построение единой теории поля, которая бы объединила все знания человечества о природе, и из которой можно было бы вывести (хотя бы в принципе) все законы как частные случаи такой теории.

 

Фундаментальные взаимодействия


В настоящее время известно четыре фундаментальных взаимодействия: гравитационное, электромагнитное, сильное и слабое. Первые два обладают дальнодействием и проявляются в повседневной жизни. Гравитация, например, управляет движением небесных тел. Все мы испытываем гравитационное притяжение Земли. Электромагнетизм объясняет большинство явлений, с которыми сталкивается человек в повседневной жизни. Два других взаимодействия короткодействующие. Они проявляются только на масштабах атомного ядра (объясняют альфа- и бета-распад) и становятся определяющими на более мелких масштабах.

В микромире ключевую роль играют квантовые свойства частиц. Для описания фундаментальных взаимодействий, однако, недостаточно обычной квантовой механики. Во-первых, квантовая механика является нерелятивистской теорией, то есть она верна для малых скоростей по сравнению со скоростью света. Во-вторых, квантовая механика не описывает процессы рождения и уничтожения частиц, которые происходят при взаимодействии частиц высоких энергий. Релятивистским обобщением (согласующимся с идеями специальной теории относительности) квантовой механики является квантовая теория поля.

 

Квантовая теория поля


В квантовополевых теориях частицы материи являются «квантами» (возмущениями) соответствующих полей. Взаимодействие между частицами переносится специальными полями. Предполагается, что частицы материи в процессе взаимодействия испускают и поглощают другие частицы — кванты поля-переносчика.

Первый успешный пример квантовой теории поля — квантовая электродинамика — был построен в работах Фейнмана, Швингера и Томонаги в середине двадцатого века, за что они были удостоены Нобелевской премии в 1965 году. Квантовая электродинамика рассматривает взаимодействие между заряженными частицами (например, электронами и позитронами), возникающее вследствие обмена фотонами — квантами электромагнитного поля.

Вплоть до настоящего времени квантовая электродинамика остается самой точной физической теорией. Теоретические расчеты в рамках квантовой электродинамики совпадают с результатами экспериментов с точностью до 10−10.

 

Симметрия в физике элементарных частиц


Под симметрией физики понимают неизменность чего-либо при выполнении определенных преобразований. При этом большую роль играет симметрия законов, или уравнений. Например, уравнение x2 = 4 симметрично (то есть не меняется) относительно преобразования x → −x.

В физике симметрии играют двоякую роль. Во-первых, каждому типу симметрии физической системы соответствует сохраняющаяся величина. Например, из однородности времени (неизменность относительно преобразований t → t + Δt) следует закон сохранения энергии, из однородности пространства (неизменность относительно преобразований координат x → x + Δx) — закон сохранения импульса, из изотропности пространства (неизменность относительно поворотов) — закон сохранения момента импульса (момент импульса L = mvr характеризует «количество вращения» и является аналогом импульса p = mv).

Во-вторых, от новых физических теорий можно требовать выполнения различных симметрий. Чем больше таких требований — тем меньше произвол в построении теории.

Примером физической теории, обладающей симметрией, является обычная квантовая механика, оперирующая волновыми функциями. Волновая функция частицы — это комплексная функция, например, пространственных координат (грубо говоря, комплексное число в каждой точке). Ее можно рассчитать из уравнения Шрёдингера. Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который показывает вероятность нахождения частицы в каком-либо месте.

Если все волновые функции умножить на одно и то же комплексное число с модулем 1, никакие предсказания теории не изменятся. Действительно, модуль произведения комплексных чисел равен произведению модулей, и от такого домножения никакие вероятности не изменяются.

Это пример так называемой глобальной симметрии (глобальной — потому, что волновая функция умножалась в разных точках на одно и то же число). Суть этой симметрии заключается в том, что теория не изменяется относительно некоторого класса преобразований (в нашем случае эти преобразования — умножение на произвольное комплексное число с модулем, равным 1).

Квантовая электродинамика обладает симметрией относительно преобразований, называемых калибровочными. Эти преобразования заключаются в домножении поля электронов на комплексное число с модулем 1 (правда, чтобы теория не изменялась, одновременно с преобразованием поля электронов нужно выполнить и некоторые другие преобразования электромагнитного поля). В отличие от рассмотренного выше случая квантовой механики, это число уже может быть в каждой точке различным (локальная симметрия).

Интересно отметить следующий момент. Как было сказано выше, с каждой симметрией связана сохраняющаяся величина. В случае калибровочных преобразований квантовой электродинамики такой сохраняющейся величиной является обычный электрический заряд.

В пятидесятых годах Янг и Миллс построили модель, уравнения которой не менялись под действием более сложных локальных калибровочных преобразований. Сначала интерес был исключительно математическим. Однако потом на основе теории Янга — Миллса были созданы основные теории взаимодействия элементарных частиц — теория электрослабых взаимодействий и квантовая хромодинамика. Эти теории, обладающие калибровочной симметрией, получили экспериментальное подтверждение.

 

Стандартная модель фундаментальных взаимодействий


В шестидесятых годах удалось объединить электромагнетизм и слабые взаимодействия. Салам, Глэшоу и Вайнберг построили теорию электрослабых взаимодействий. В 1979 году им была присуждена Нобелевская премия. Новая теория предсказала существование новых частиц, так называемых W- и Z-бозонов. Они отвечают за «перенос» слабого взаимодействия. Эти бозоны были открыты на протонном суперсинхротроне в 1983 году.

Казалось бы, каким образом можно объединить электромагнитные и слабые взаимодействия, если у первых радиус взаимодействия бесконечен (действительно, мы видим свет — электромагнитное излучение — от удаленных галактик и других астрономических объектов), а у вторых он не превышает размеры атомного ядра? Оказывается, такая «несимметричность» связана с тем, что масса фотонов равна нулю, а масса W- и Z-бозонов очень большая, они примерно в 100 раз тяжелее протона.

Нарушение так называемой электрослабой симметрии является важным свойством теории электрослабых взаимодействий (этой симметрией обладают уравнения теории). В результате нарушения W- и Z-бозоны и некоторые другие частицы (например, электроны) приобретают массы.

В рамках модели Янга — Миллса калибровочные бозоны нельзя сделать массивными, не разрушив калибровочную симметрию. Для нарушения электрослабой симметрии был придуман механизм Хиггса. Основная идея заключается в том, что все пространство пронизывает специальное хиггсовское поле, которое взаимодействует с остальными полями и нарушает симметрию, хотя уравнения теории остаются симметричными. Возмущения хиггсовского поля должны проявляться на эксперименте как новые частицы — хиггсовские бозоны. Бозон Хиггса — очень тяжелая частица, тяжелее W- и Z-бозонов. Поэтому она пока не открыта экспериментально.

Теория сильных взаимодействий, квантовая хромодинамика, тоже основана на уравнениях Янга — Миллса. Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы (например, протон) — состоят из кварков. Однако изолированные кварки никогда не наблюдались (это явление называется конфайнментом). Из-за сложности уравнений квантовой хромодинамики конфайнмент до сих пор не выведен из них напрямую. Кстати, решение уравнений Янга — Миллса и объяснение конфайнмента является одной из семи проблем тысячелетия, за которые институт Клэя назначил приз в миллион долларов.

Квантовая хромодинамика также находит подтверждение в ускорительных экспериментах. Стандартная модель фундаментальных взаимодействий включает в себя модель электрослабых взаимодействий и квантовую хромодинамику. Стандартная модель оказалась в состоянии объяснить практически все экспериментальные данные, полученные к настоящему времени в физике элементарных частиц.

 

Суперсимметрия


 

Идея суперсимметрии


Перед тем, как перейти к обсуждению суперсимметрии, рассмотрим понятие спина. Спин — это собственный момент импульса, присущий каждой частице. Он измеряется в единицах постоянной Планка и бывает целым или полуцелым. Спин является исключительно квантовомеханическим свойством, его нельзя представить с классической точки зрения. Наивная попытка трактовать элементарные частицы как маленькие «шарики», а спин — как их вращение, противоречит специальной теории относительности, так как точки на поверхности шариков должны в таком случае двигаться быстрее света. Электроны обладают спином 1/2, фотоны — спином 1.

Суперсимметрия — это симметрия между частицами с целым и полуцелым спином. Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот. С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории.

Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем. Рассмотрим некоторые из них.

 

Мотивировка суперсимметрии


Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир. Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели.

 

Объединение констант связи


Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях (по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц). При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное.

В Стандартной модели, однако, электрослабое и сильное взаимодействия объединены лишь формально. Они могут оказаться разными проявлениями общего взаимодействия, а могут и не оказаться. Тем не менее, анализ экспериментальных результатов дает некоторые подсказки к вопросу о существовании великого объединения.

У каждого из фундаментальных взаимодействий есть величина, которая характеризует его интенсивность. Эта величина называется константой взаимодействия. Константа электромагнитных взаимдействий просто равна заряду электрона. В случае сильных и слабых взаимодействий ситуация несколько сложнее.

Одно из интересных свойств квантовой теории поля состоит в том, что константа взаимодействия на самом деле не константа — она меняется при изменении характерных энергий процессов с участием элементарных частиц, причем теория может предсказать характер этой зависимости.

В частности, это означает, что при приближении к электрону на расстояния, гораздо меньшие размеров атома, начинает меняться его заряд! Причем такое изменение, обусловленное квантовыми эффектами, подтверждено экспериментальными данными, например, небольшим изменением уровней энергии электронов в атоме водорода (лэмбовский сдвиг).

Константы электромагнитного, слабого и сильного взаимодействий измерены с достаточной точностью для того, чтобы можно было вычислить их изменение с ростом энергии. Результаты изображены на рисунке. В Стандартной модели (графики слева) нет таких энергий, где произошло бы объединение констант взаимодействий. А в минимальном суперсимметричном расширении Стандартной модели (графики справа) такая точка имеется. Это значит, что суперсимметрия в физике элементарных частиц обладает приятным свойством — в ее рамках возможно великое объединение!


Эволюция калибровочных констант связи с ростом масштаба энергии в Стандартной модели и МССМ.

 

Объединение с гравитацией


Стандартная модель не включает гравитационное взаимодействие. Оно совершенно незаметно в ускорительных экспериментах из-за малых масс элементарных частиц. Однако при больших энергиях гравитация может стать существенной.

Современная теория гравитационных взаимодействий — общая теория относительности — является классической теорией. Квантовое обобщение этой теории, без сомнения, стало бы самой общей физической теорией, если бы было построено. Помимо отсутствия каких бы то ни было экспериментальных данных, имеются серьезные теоретические препятствия в построении теории квантовой гравитации.

В объединении гравитации с остальными взаимодействиями также есть трудности. Переносчик гравитационного взаимодействия, гравитон, должен иметь спин 2, в то время как спин переносчиков остальных взаимодействий (фотон, W- и Z-бозоны, глюоны) равен 1. Чтобы «перемешать» эти поля, нужно преобразование, меняющее спин. А преобразование суперсимметрии как раз и есть такое преобразование. Оно уменьшает спин частицы на 1/2 и, следовательно, может перемешивать частицы с разными спинами. Таким образом, объединение с гравитацией в рамках суперсимметрии вполне естественно.

 

Природа темной материи Вселенной


Суперсимметрия может объяснить некоторые результаты исследований в космологии. Один из таких результатов заключается в том, что видимая (светящаяся) материя составляет не всю материю во Вселенной. Значительное количество энергии приходится на так называемую темную материю и темную энергию.

Прямым указанием на существование темной материи являются зависимости скоростей звезд в спиральных галактиках от их расстояния до центра. Эту зависимость легко вычислить. Оказывается, экспериментальные данные существенно расходятся с предсказаниями теории.

Расхождение объясняют тем, что галактики находятся в «облаках» темной материи. Частицы темной материи взаимодействуют только гравитационно. Поэтому они группируются вокруг галактик (правильнее было бы сказать, что обычная материя группируется вокруг сгустков темной материи) и искажают распределение масс в галактике.

Реликтовое излучение — равновесное тепловое излучение, заполняющее Вселенную. Это излучение отделилось от вещества на ранних этапах расширения Вселенной, когда электроны объединились с протонами и образовали атомы водорода (рекомбинация). Тогда Вселенная была в 1000 раз моложе, чем сейчас. Нынешняя температура реликтового излучения составляет примерно 3 K.

Недавние высокоточные измерения распределения температуры реликтового излучения по небу в эксперименте WMAP показали, что общая энергия Вселенной распределена между темной энергией (73%), темной материей (23%) и обычной материей (4%), то есть темная материя составляет значительную часть, превосходящую во много раз долю видимой материи.

В Стандартной модели нет подходящих частиц для объяснения темной материи. В то же время в некоторых суперсимметричных моделях есть прекрасный кандидат на роль холодной темной материи, а именно нейтралино — легчайшая суперсимметричная частица. Она стабильна, так что реликтовые нейтралино могли бы сохраниться во Вселенной со времен Большого взрыва.

Что касается темной энергии, ее природа в рамках современных физических теорий совершенно непонятна. Это настоящий вызов физикам двадцать первого века. Темную энергию можно интерпретировать как собственную энергию вакуума, однако при этом возникают огромные несоответствия между теоретическими оценками и наблюдаемым значением плотности темной энергии. Существование темной энергии приводит к наблюдаемым следствиям — ускоренному расширению Вселенной в настоящее время.

 

МССМ


Для построения суперсимметричных моделей был развит математический аппарат, останавливаться на котором здесь нет никакой возможности. Однако, несмотря на всю сложность математического аппарата, суперсимметричные теории обладают рядом простых особенностей.

К одной из таких особенностей относится удвоение числа частиц. Каждая частица приобретает суперпартнера — частицу, обладающую точно такими же свойствами, за исключением спина, отличающегося на 1/2.

В Стандартной модели нет частиц, которые могли бы быть суперпартнерами друг друга. Следовательно, в суперсимметричных расширениях Стандартной модели каждая частица приобретает своего суперпартнера — новую частицу. Минимальная суперсимметричная Стандартная модель (МССМ) требует для построения меньше всего новых частиц.

Другой важной особенностью суперсимметричных моделей является нарушение суперсимметрии. Если бы такого нарушения не было, суперпартнеры имели такие же массы, что и обычные частицы. Однако новые частицы с массами известных частиц Стандартной модели никогда не наблюдались. Также без нарушения суперсимметрии не работал бы хиггсовский механизм нарушения электрослабой симметрии.

Чтобы применять суперсимметричные модели в физике высоких энергий, необходимо потребовать нарушение суперсимметрии. При этом суперпартнеры могут приобрести большие массы, чем можно объяснить их ненаблюдение в настоящее время.

Конкретный механизм нарушения суперсимметрии сейчас неизвестен. Это существенно снижает предсказательную силу модели, так как в ней появляется большое число свободных параметров, подбирая которые, можно получать произвольные следствия. Некоторые соображения, например, гипотеза великого объединения, позволяют ограничить число свободных параметров. Исследование ограничений на параметры суперсимметричных моделей является одним из важных направлений в исследовании физики за пределами Стандартной модели.

 

Экспериментальный статус суперсимметричных моделей


Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. Поиски различных проявлений суперсимметрии в природе были одной из главных задач многочисленных экспериментов на коллайдерах (LEP — большой электрон-позитронный коллайдер и Тэватрон) и в неускорительных экспериментах на протяжении нескольких десятилетий.

К сожалению, результат пока отрицательный. Нет никаких прямых указаний на существование суперсимметрии в физике элементарных частиц, хотя имеющиеся суперсимметричные модели в целом не запрещены имеющимися теоретическими и экспериментальными требованиями.

LHC (большой адронный коллайдер) — новый ускоритель, построенный в ЦЕРНе. Его энергия в семь раз превосходит энергию действующего американского ускорителя Тэватрона. В большинстве суперсимметричных моделей массы новых частиц лежат в области, доступной LHC. Предполагается, что на LHC будет открыт бозон Хиггса и суперсимметричные частицы. В новых экспериментах низкоэнергетическая суперсимметрия будет либо обнаружена, либо исключена.

Хотя суперсимметрия и не открыта на опыте, различные суперсимметричные модели могут быть исследованы уже сейчас. Во-первых, следует исключить модели, в которых новые частицы имеют недостаточно большие массы, к настоящему времени уже закрытые экспериментально. Во-вторых, расхождения некоторых экспериментальных данных и теоретических предсказаний Стандартной модели могут объясняться вкладом суперсимметричных частиц, и с этой точки зрения некоторые суперсимметричные модели оказываются предпочтительнее других.

Многие специалисты в физике высоких энергий исследуют различные варианты суперсимметричных моделей и их следствия. Вполне возможно, что одна из таких моделей будет подтверждена на ускорителе LHC.
Tags:
Hubs:
+133
Comments 39
Comments Comments 39

Articles