• Planning Poker: как сделать процесс постановки задач максимально прозрачным и четким

      В прошлом посте мы рассказали о том, как работаем с бэклогом, а сегодня поделимся подробностями о процессе планирования, который в нашем случае не только полезный, но и увлекательный, поскольку оценку задач мы проводим с помощью «Planning Poker».

      image
      Читать дальше →
    • Атака на АБ-тест: рецепт 'R'+t(101)+'es46'

        АБ-тестирование — один из самых сильных и полезных инструментов управления продуктом, который позволяет оценить эффективность тех или иных решений на экономические показатели в интернет-бизнесе. За пять лет работы мы провели огромное количество АБ-тестов, и поэтому отлично знаем, насколько сложно провести эксперименты правильно и какие ошибки повторяются постоянно.

        Несколько месяцев назад один из наших конкурентов начал делать странное – предлагать нашим клиентам сравнение своей системы рекомендаций с Retail Rocket через АБ-тесты в формате «пари» с обязательством заплатить 100 000 рублей в случае проигрыша.

        Подобные истории для нас не редкость — за время существования компании нашу систему сравнивали практически со всеми существующими рекомендательными системами в России и за рубежом, и мы всегда показывали отличные результаты (ни в одном тесте мы не проиграли по эффективности).

        Первый тест с Rees не заставил себя ждать, но в ходе его проведения мы столкнулись с довольно странными результатами, которые вылились в серьезное исследование. То, что мы обнаружили в итоге, удивило нас так сильно, что мы хотим поделиться деталями этого исследования и вынести его результаты на суд IT-сообщества и индустрии электронной коммерции в России.


        Читать дальше →
      • Работа с бэклогом задач с точки зрения проектного менеджера в Retail Rocket

          Хабр, привет! Мы продолжаем делиться с сообществом внутренней кухней Retail Rocket, и сегодня расскажем о нашем подходе к работе с бэклогом. Правильная приоритезация задач — это первый шаг в решении таких важных проблем проекта как:

          • уменьшение технического долга,
          • поддержка скорости работы производства,
          • поддержка качества продукта.

          За годы существования проекта у нас сложилась система, при которой вся работа со списком задач подчиняется двум принципам: «не начинай новое, если не закончил старое» и «всегда расчищай место для нового функционала».

          Вот как эти два принципа воплощаются в правила приоритезации бэклога.


          Читать дальше →
          • +13
          • 2,9k
          • 2
        • Курс молодого бойца для Spark/Scala

            Хабр, привет!

            Команда Retail Rocket использует узкоспециализированный стек технологий Hadoop + Spark для вычислительного кластера, о котором мы уже писали обзорный материал в самом первом посте нашего инженерного блога на Хабре.

            Готовых специалистов для таких технологий найти довольно сложно, особенно, если учесть, что программируем мы исключительно на Scala. Поэтому я стараюсь найти не готовых специалистов, а людей, имеющих минимальный опыт работы, но обладающих большим потенциалом. Мы берем даже людей с частичной занятостью, чтобы было удобно совмещать учебу и работу, если кандидат — студент последних курсов.


            Читать дальше →
            • +15
            • 17,9k
            • 8
          • Рабочее место .NET разработчика или трудности выбора идеальной конфигурации

              Хабр, привет!

              Мы продолжаем приоткрывать дверь в технологическую кухню Retail Rocket. В сегодняшней статье мы решили поделиться историей о нашем «корпоративном backend`е», речь пойдет о рабочем месте для разработчика. Та самая зона комфорта, которая окружает нас в жизни, но является не менее важной, чем выбор стека технологий.

              Передо мной встала задача подготовить рабочее место для нового члена команды разработки, казалось бы, что может быть проще? На практике оказалось все гораздо сложнее, чем я ожидал. Раньше мы покупали стол «Галант» в IKEA, любое офисное кресло + MacBook Pro – и у нас готово новое рабочее место.


              Старое рабочее место .NET разработчика в офисе Retail Rocket

              С тех пор прошло 2 года, мы выросли, у нас изменился стиль работы — пора подбирать новую конфигурацию. Половина нашей команды работает на технологическом стеке от Microsoft. Это большой проект в Visual Studio 2015 + Resharper: 26 приложений, 9 библиотек, 3 проекта с тестами, что в сумме на момент публикации статьи дает 4 312 файлов и более 60 тыс. строк кода. Плюс IIS с компиляцией и запуском приложения на локальной машине, что накладывает повышенные требования к вычислительной мощности используемого оборудования.

              На выбор подходящей конфигурации я потратил 4 недели и все еще не уверен, что все сделал правильно, поэтому решил, что мой опыт будет полезен сообществу, тем более, что вы всегда сможете скорректировать конфигурацию индивидуально под себя.
              Читать дальше →
            • Redis и проблема больших данных

                in memory db

                Привет, Хабр! Мы продолжаем делиться технологической кухней Retail Rocket. В сегодняшней статье мы разберем вопрос выбора БД для хранения больших и часто обновляемых данных.

                На самом начальном этапе разработки платформы перед нами возникли следующие задачи:
                • Хранить у себя товарные базы магазинов (т.е. сведения о каждом товаре всех подключенных в нашу платформу магазинов с полным обновлением 25 млн. товарных позиций каждые 3 часа).
                • Хранить рекомендации для каждого товара (около 100 млн. товаров содержит от 20 и более рекомендуемых товаров для каждого ключа).
                • Обеспечение стабильно быстрой выдачи таких данных по запросу.

                Читать дальше →
              • Подводные камни A/Б-тестирования или почему 99% ваших сплит-тестов проводятся неверно?

                  image

                  «Горячая» и часто обсуждаемая сегодня тема оптимизации конверсии привела к безусловной популяризации А/Б-тестирования, как единственного объективного способа узнать правду о работоспособности тех или иных технологий/решений, связанных с увеличением экономической эффективности для онлайн-бизнеса.

                  За этой популярностью скрывается практически полное отсутствие культуры в организации, проведении и анализе результатов экспериментов. В Retail Rocket мы накопили большую экспертизу в оценке экономической эффективности от систем персонализации в электронной коммерции. За два года был отстроен идеальный процесс проведения A/Б-тестов, которым мы и хотим поделиться в рамках этой статьи.
                  Читать дальше →
                • Анализ данных на Scala. Считаем корреляцию 21-го века


                    Очень важно выбрать правильный инструмент для анализа данных. На форумах Kaggle.com, где проводятся международные соревнования по Data Science, часто спрашивают, какой инструмент лучше. Первые строчки популярноcти занимают R и Python. В статье мы расскажем про альтернативный стек технологий анализа данных, сделанный на основе языка программирования Scala и платформы распределенных вычислений Spark.

                    Как мы пришли к этому? В Retail Rocket мы много занимаемся машинным обучением на очень больших массивах данных. Раньше для разработки прототипов мы использовали связку IPython + Pyhs2 (hive драйвер для Python) + Pandas + Sklearn. В конце лета 2014 года приняли принципиальное решение перейти на Spark, так как эксперименты показали, что мы получим 3-4 кратное повышение производительности на том же парке серверов.
                    Подробности
                  • Персонализация в электронной коммерции

                      Привет, Хабр!

                      Сегодня мы начинаем цикл статей о том, как мы строим сервис Retail Rocket. За без малого три года работы, мы собрали солидный технологический стек, разочаровались в большом количестве «модных» технологий и построили очень сложную систему.

                      Вкратце, Retail Rocket – платформа для мультиканальной персонализации интернет­-магазина на основе Big Data. Наш сервис анализирует поведение посетителей интернет-магазина, выявляет потребности и в нужный момент показывает интересные именно им предложения на сайте, в email и display кампаниях, увеличивая доход интернет­-магазина за счет роста конверсии, среднего чека и частоты повторных покупок.

                      Этой статьей мы открываем инженерный блог Retail Rocket (маркетинговый блог мы ведем почти два года) с рассказом об используемых подходах в области анализа данных и кратким перечнем используемых технологий. Ко всему описанному в статье мы пришли итеративно и в следующих статьях постараемся подробно описать наш путь в каждой из областей.
                      Подробности
                    Самое читаемое