• AlphaGo Zero совсем на пальцах

      Завтра искусственный интеллект поработит Землю и станет использовать человеков в качестве смешных батареек, поддерживающих функционирование его систем, а сегодня мы запасаемся попкорном и смотрим, с чего он начинает.

      19 октября 2017 года команда Deepmind опубликовала в Nature статью, краткая суть которой сводится к тому, что их новая модель AlphaGo Zero не только разгромно обыгрывает прошлые версии сети, но ещё и не требует никакого человеческого участия в процессе тренировки. Естественно, это заявление произвело в AI-коммьюнити эффект разорвавшейся бомбы, и всем тут же стало интересно, за счёт чего удалось добиться такого успеха.

      По мотивам материалов, находящихся в открытом доступе, Семён sim0nsays записал отличный стрим:


      А для тех, кому проще два раза прочитать, чем один раз увидеть, я сейчас попробую объяснить всё это буквами.

      Сразу хочу отметить, что стрим и статья собирались в значительной степени по мотивам дискуссий на closedcircles.com, отсюда и спектр рассмотренных вопросов, и специфическая манера повествования.

      Ну, поехали.
      Читать дальше →
    • Достижения в глубоком обучении за последний год


        Привет, Хабр. В своей статье я расскажу вам, что интересного произошло в мире машинного обучения за последний год (в основном в Deep Learning). А произошло очень многое, поэтому я остановился на самых, на мой взгляд, зрелищных и/или значимых достижениях. Технические аспекты улучшения архитектур сетей в статье не приводятся. Расширяем кругозор!

        Читать дальше →
      • Как мы обучали приложение Яндекс.Такси предсказывать пункт назначения

          Представьте: вы открываете приложение, чтобы в очередной раз заказать такси в часто посещаемое вами место, и, конечно, в 2017 году вы ожидаете, что все, что нужно сделать – сказать приложению «Вызывай», и такси за вами тут же выедет. А куда вы хотели ехать, через сколько минут и на какой машине — все это приложение узнает благодаря истории заказов и машинному обучению. В общем-то все, как в шутках про идеальный интерфейс с единственной кнопкой «сделать хорошо», лучше которого только экран с надписью «все уже хорошо». Звучит здорово, но как же приблизить эту реальность?



          На днях мы выпустили новое приложение Яндекс.Такси для iOS. В обновленном интерфейсе один из акцентов сделан на выборе конечной точки маршрута («точки Б»). Но новая версия – это не просто новый UI. К запуску обновления мы существенно переработали технологию прогнозирования пункта назначения, заменив старые эвристики на обученный на исторических данных классификатор.

          Как вы понимаете, кнопки «сделать хорошо» в машинном обучении тоже нет, поэтому простая на первый взгляд задача вылилась в довольно захватывающий кейс, в результате которого, мы надеемся, у нас получилось немного облегчить жизнь пользователей. Сейчас мы продолжаем внимательно следить за работой нового алгоритма и еще будем его менять, чтобы качество прогноза было стабильнее. На полную мощность запустимся в ближайшие несколько недель, но под катом уже готовы рассказать о том, что же происходит внутри.

          Читать дальше →
        • Метавычисления и глубокие свёрточные сети: интервью с профессором ИТМО



            После победы AlphaGo в марте 2016 года над одним из сильнейших игроков Go в мире Ли Седолем о методах глубокого обучения заговорили практически везде. И даже Google не упустил случая назвать себя компанией машинного обучения и искусственного интеллекта.

            Что стоит за термином «глубокое обучение»? Какими бывают модели машинного обучения и на чём они пишутся? Ответить на эти и многие другие вопросы, связанные с МО и, в частности, с глубоким обучением (deep learning), мы попросили Алексея Потапова, профессора кафедры компьютерной фотоники и видеоинформатики ИТМО.
            Читать дальше →
            • +52
            • 11,8k
            • 3
          • Передаю привет разработчикам компании Yandex

              ClickHouse and PVS-Studio

              Приблизительно раз в полгода нам пишет кто-то из сотрудников компании Yandex, интересуется лицензированием PVS-Studio, качает триал и пропадает. Это нормально, мы привыкли к медленным процессам продажи нашего анализатора в крупные компании. Однако, раз представился повод, будет не лишним передать разработчикам Yandex привет и напомнить об инструменте PVS-Studio.
              Читать дальше →
            • Data Science: Про любовь, имена и не только

              Что значит имя? Роза пахнет розой,
              Хоть розой назови ее, хоть нет.

              • Шекспир "Ромео и Джульетта" (пер. Пастернака)

              Ромео и Джульетта


              Данная статья не может служить поводом для выражения нетолерантности или дискриминации по какому-либо признаку.


              В этой статье я расскажу о том, что несмотря на то, каким бы странным это не казалось для образованного человека, вероятность быть одинокой/одиноким зависит от имени. То есть, по сути, мы поговорим про любовь и отношения.


              Это примерно все равно, что сказать: вероятность быть сбитым машиной, если тебя зовут Сережа, выше, чем если бы тебя звали Костя! Звучит довольно дико, не правда ли? Ну, как минимум, ненаучно. Однако социальные сети сделали возможным сравнительно просто проверить приведенное выше утверждение.


              Подробно мы рассмотрим только девушек, а про мужчин поговорим в самом конце. Более того, я не ставлю своей целью установить причину происходящего или даже выдвинуть какую-то сколько угодно серьезную гипотезу, а хочу лишь рассказать о своих наблюдениях и фактах, которые можно измерить.

              Читать дальше →
            • AdBlock похитил этот баннер, но баннеры не зубы — отрастут

              Подробнее
              Реклама
            • Поиск лучшего места в мире для ветряка

                История о том, как NASA, ESA, Датский Технологический Университет, нейронные сети, деревья решений и прочие хорошие люди помогли найти мне лучший бесплатный гектар на Дальнем Востоке, а также в Африке, Южной Америке и других “так себе” местах.


                Читать дальше →
              • Выбор алгоритма вычисления квантилей для распределённой системы


                  Всем привет! Меня зовут Александр, я руковожу отделом Data Team в Badoo. Сегодня я расскажу вам о том, как мы выбирали оптимальный алгоритм для вычисления квантилей в нашей распределённой системе обработки событий.

                  Читать дальше →
                  • +52
                  • 8,4k
                  • 3
                • Спортивный анализ данных, или как стать специалистом по data science

                    Меня зовут Пётр Ромов, я — data scientist в Yandex Data Factory. В этом посте я предложу сравнительно простой и надежный способ начать карьеру аналитика данных.

                    Многие из вас наверняка знают или хотя бы слышали про Kaggle. Для тех, кто не слышал: Kaggle — это площадка, на которой компании проводят конкурсы по созданию прогнозирующих моделей. Её популярность столь велика, что часто под «кэглами» специалисты понимают сами конкурсы. Победитель каждого соревнования определяется автоматически — по метрике, которую назначил организатор. Среди прочих, Kaggle в разное время опробовали Facebook, Microsoft и нынешний владелец площадки — Google. Яндекс тоже несколько раз отметился. Как правило, Kaggle-сообществу дают решать задачи, довольно близкие к реальным: это, с одной стороны, делает конкурс интересным, а с другой — продвигает компанию как работодателя с солидными задачами. Впрочем, если вам скажут, что компания-организатор конкурса задействовала в своём сервисе алгоритм одного из победителей, — не верьте. Обычно решения из топа слишком сложны и недостаточно производительны, а погони за тысячными долями значения метрики не настолько и нужны на практике. Поэтому организаторов больше интересуют подходы и идейная часть алгоритмов.



                    Kaggle — не единственная площадка с соревнованиями по анализу данных. Существуют и другие: DrivenData, DataScience.net, CodaLab. Кроме того, конкурсы проводятся в рамках научных конференций, связанных с машинным обучением: SIGKDD, RecSys, CIKM.

                    Для успешного решения нужно, с одной стороны, изучить теорию, а с другой — начать практиковать использование различных подходов и моделей. Другими словами, участие в «кэглах» вполне способно сделать из вас аналитика данных. Вопрос — как научиться в них участвовать?
                    Хардкор
                  • «Сложную архитектуру очень просто сделать» — интервью с Олегом Анастасьевым из Одноклассников



                      Знакомьтесь, Олег Анастасьев — ведущий разработчик Одноклассников, спикер на конференциях по Java и Cassandra, эксперт в области распределенных и отказоустойчивых систем. С Олегом мы поговорили о следующем:

                      • Что не так с термином «архитектор»
                      • Зачем Одноклассникам 11 000 серверов
                      • Как выглядят учения по ликвидации аварий
                      • Что такое «Правило большого З»
                      • Как в Одноклассниках используют Cassandra
                      • В чём для современной компании сложности с размещением кода в Open Source
                      • Как в Одноклассниках работают с Big Data




                      Как всегда, под катом — полная текстовая расшифровка беседы.
                      Читать дальше →
                    Самое читаемое