С днём рождения, Пи!

    Сегодня исполняется ровно 250 лет с того дня, как немецкий физик и математик Иоганн Генрих Ламберт, отвлёкшись от своих трактатов по оптике и астрономии, доказал, что Пи является иррациональным числом. Это значит, что не существует таких целых чисел p и q, для которых было бы верно равенство Пи = p/q.

    На первый взгляд, что здесь такого важного? Рациональное число или иррациональное — какая разница? В практическом инженерном применении это ничего не меняет, потому что при конструкции любого цилиндра или хирургической иголки они всё равно аппроксимируют Пи с погрешностью, допустимой для каждой конструкции. Это могли делать инженеры Римской империи почти так же успешно, как мы, оснащённые мощной компьютерной техникой (хотя у Пифагора, например, понятие иррациональных чисел вызывало столь сильное отвращение, что он вообще отрицал их существование).

    Но всё-таки, каков же смысл работы Ламберта? Какова её польза для общества?

    На этот вопрос самый полный и одновременно лаконичный ответ дал оксфордский математик Эдвард Титчмарш: «От того, что мы знаем, что Пи иррационально, нет никакой практической пользы, но если мы можем знать это, то не знать этого становится невыносимо». В этом вся суть математики. Наука существует, потому что до сих пор остались нерешённые проблемы и вопросы без ответов.

    В этом смысле математики находятся в одной лодке с филологами, философами и историками, которые могут отдать всю жизнь на изучение какого-нибудь мелкого лингвистического нюанса или исторического факта, не имеющего абсолютно никакой практической пользы для современного общества. Например, мог ли эректус жить в условиях экстремально низких температур? Почему в Новгороде 10 века было больше грамотных женщин, чем в Москве 15 века? Таких вопросов огромное количество. Если есть возможность узнать ответ, то мы не можем остановиться и просто обязаны удовлетворить своё любопытство. Мы получаем удовольствие от изучения таких проблем. То же самое верно в математике, и никакого практического смысла здесь быть не может.

    Есть проблемы, которые нужно решить, есть знание, которое должно быть усовершенствовано. Люди в школах и университетах сталкиваются с вопросами тысячелетней давности, на которые никто до сих пор не ответил. И они пробуют свои силы. Если в процессе этого появляется некий побочный продукт, полезный для общества, то хорошо. Например, создание электрических батарей стало возможным благодаря работе Джеймса Максвелла по изучению магнетизма и электричества, однако шотландский физик занимался наукой не ради батареек.

    Доказательство Ламберта дало пищу для изучения студентам математики и вызвало новые вопросы, которые, в свою очередь, породили новую волну исследований. Но самое главное, что Ламберт ответил на вопрос, на который никто не мог ответить в течение столетий. Вот в чём главный смысл. Об этом нужно помнить тем, кто справшивает о «практической пользе» открытий.

    via Timothy Trudgian
    Поделиться публикацией
    Похожие публикации
    Реклама помогает поддерживать и развивать наши сервисы

    Подробнее
    Реклама
    Комментарии 56
    • +21
      > не существует таких чисел p и q
      не существует таких целых чисел p и q
      • +3
        рациональных чисел
        • +3
          А между прочим зря минусуете. Рациональных чисел таких, что p/q = π тоже нет.
          • +2
            Да, но определение-то не так звучит.
          • +5
            Для любых рациональных p и q найдутся такие целые u и v, что p/q = u/v

            Поэтому пофиг.
            • –8
              С математической точки зрения — пофиг.
              С логической точки зрения — мое утверждение сильнее.
              • 0
                Почему?
                • +5
                  Оно эквивалентно :)
                  • 0
                    Вот и я о том.
                    Хотел написать тривиальное доказательство, но alexey_uzhva уже это сделал чуть ниже. Ни о чём спор)
                    • 0
                      ОК, ладно, не буду срач разводить в пятницу. Приятных выходных!
                    • 0
                      «Мое кунг-фу сильнее твоего кунг-фу»
                  • 0
                    Подозреваю что любое соотношение рациональных чисел может быть элементарными преобразованиями приведено к отношению целых.
                  • +8
                    такого целого p и натурального q
                    • +15
                      если p и q рациональные, то их можно представить как p1/p2 и q1/q2 соответственно, где p1,p2,q1,q2 — целые числа. А значит приходим к тому же (p1*q2)/(p2*q1), где числитель и знаменатель — целые.

                      А если числитель и знаменатель — целые, то это легко можно привести к дроби с натуральным знаменателем.

                      А значит — все высказавшие выше правы и сказали одно и то же, и нефиг тут делиться!
                      • +2
                        Определение множества рациональных чисел — это множество классов эквивалентности пар (m,n), где m — целое, n — натуральное + само отношение. Натуральное число дано не просто так, а чтобы избежать некорректности в определении отношения. Так что комментаторы выше, с формальной точки зрения математики, весьма неправы. В математике важна корректность формулировок, а не только их истинность.
                        • 0
                          Я полностью согласен с корректностью вашего определения. Однако раз уж мы тут играемся в математиков, которым важна корректность формулировок, то выше ни в одной из формулировок слово «определение» не звучало. Люди упоминали, какими могут быть числа p и q, и все они оказались правы. И вы, кстати, тоже правы со своим определением:)
                  • +23
                    Теперь я понимаю почему говорят «это же alizar !». )
                    • –2
                      Например, мог ли эректус жить в условиях экстремально низких температур?
                      Не мог. На лютом морозе как-то трудно вызвать эректус. Подтверждено практикой. Получается скукожитус, скорее.
                      • +6
                        Что-то ТС (или автор) загнули по поводу никакого смысла. Вы действительно не видите смысла в изучении гомо эректуса и грамотности народа?
                        • +18
                          При таком подходе, у числа Пи много дней рождения. Ализар, Не забудь написать топик в день доказательства его трансцендентности, в день когда этому числу дал обозначение Джонс, затем утвердил Эйлер, ну и 22 июля еще заодно (22/7, Архимед). Удачи
                          • +3
                            Чисто журналистский прием.
                            Громкий заголовок, за которым оказывается совсем не такое эффектное содержание.
                            В принципе нестрашно, но хотелось бы от автора большей корректности, раз уж пишет о такой строгой до бескомпромиссности науке и пропагандирует пользу именно таких четких и доказательных исследований.
                            • +7
                              а как же 14 марта?
                            • +6
                              О, наконец-то я понял как «британские ученые» выбиваю себе бабки у спонсоров.
                                • +2
                                  Поздравляю число Пи со знаметательным юбилеем и желаю оставаться в таком значении до конца жизни этой Вселенной :)
                                  • +2
                                    Тонко :)
                                    надо еще пожелать другим константам такой-же стабильности, а то ходят слухи что гравитационная постоянная совсем не постоянная…
                                  • –3
                                    Сколько знаков после запятой у числа Pi, помнишь ты — %username%?
                                    • +11
                                      Со школы прекрасно знаем, что два.
                                      • +4
                                        Чтобы правильно запомнить,
                                        Надо только верно счесть:
                                        Три, четырнадцать, пятнадцать,
                                        Девяносто два и шесть!
                                        • +5
                                          Это я знаю и помню прекрасно — «Пи» многие знаки мне лишни, напрасны.
                                          3,14159265358
                                          • 0
                                            Кто и умён, и, думаю, сметливый, пи быстро съест как сливу охуенную, офигенную, вкусную, суперскую как пи само
                                            • +1
                                              Это я знаю и помню прекрасно:
                                              Пи многие знаки мне лишни, напрасны.
                                              Доверимся знаньям громадным
                                              Тех, пи кто сосчитал, цифр армаду.
                                              • 0
                                                И по-английски:

                                                «How I want a drink, alcoholic of course, after the heavy chapters involving quantum mechanics!» (приписывается Айзеку Азимову)

                                                «May I have a large container of coffee? Thank you!»
                                            • 0
                                              Вы помните на одну цифру меньше на самом деле. Если округлять до этого количества цифр, то в конце будет 9, а не 8.
                                              • 0
                                                А 979 и 323 затем без стишка ну совершенно не запоминаются.
                                            • +3
                                              Это я знаю и помню прекрасно,
                                              Пи многие знаки мне лишни, напрасны.

                                              Считая буквы в словах получаем точность до 11 знака после запятой.
                                              • 0
                                                • +1
                                                  Только как раз про это недавно вспоминал, когда доче циферки рисовал. С 10-го класса (15 лет назад ) помню 20 знаков после запятой :-) чесслово
                                                  • 0
                                                    А где двадцать, там и двадцать семь, если запоминать цифры красивыми группами:

                                                    3.1415 926 5358 979 323 8 46264 3383

                                                    Раньше мог воспроизвести по памяти, как стихи, 101 знак (в школе было скучно, развлекался как мог). Сейчас уже забылось.
                                                • НЛО прилетело и опубликовало эту надпись здесь
                                                  • 0
                                                    Джоан Роулинг не математик, видимо. А то написала бы в «ГП» не про платформу 9 и 3 четверти, а про платформу "πи".
                                                    • 0
                                                      Математика для маглов. Матлов.
                                                    • 0
                                                      Картинку из xkcd тоже запостите сюда. Я вообще удивлён, что не увидел её первым же комментом.
                                                    • НЛО прилетело и опубликовало эту надпись здесь
                                                      • +7
                                                        > Но всё-таки, каков же смысл работы Ламберта? Какова её польза для общества?
                                                        А много ли пользы от таких топиков для хабрасообщества, alizar?
                                                        • 0
                                                          14 марта будет день числа π, 2011-3-14.
                                                          • НЛО прилетело и опубликовало эту надпись здесь
                                                          • 0
                                                            ни помню, к чему это связано, но число Пи= 22/7 в школе висел плакат
                                                          • –1
                                                            Ну что за хуета, хабр?! Как связано такое супер-важное событие как доказательство иррациональности пи и его день рождения?
                                                            • +1
                                                              А вот Владимир Игоревич Арнольд считал математику вполне экспериментальной наукой. И к его мнению стоит прислушаться: www.abitura.com/mathematics/arnold_2.htm
                                                              • +1
                                                                Разница между математикой и физикой состоит только в том, что в физике эксперименты стоят миллионы или даже миллиарды долларов, а в математике — единицы рублей или копеек.

                                                                Ага, пускай он это скажет тем, кто ищет простые числа методом решета :)
                                                                • +1
                                                                  К сожалению, Владимир Игоревич уже никому ничего не скажет :(

                                                              Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.