Почему в WiMax и LTE используют OFDM

  • Tutorial


Аббревиатура OFDM расшифровывается как Orthogonal frequency-division multiplexing. В русскоязычной литературе встречается несколько различных переводов, несущих, в принципе, один смысл: OFDM — это механизм мультиплексирования (уплотнения) посредством ортогональных поднесущих.

В статье описаны плюсы и минусы механизма OFDM. Рассмотрен принцип функционирования с физико-математической позиции. Статья содержит вводное описание радиофизических терминов, необходимых для понимания материала широкому кругу читателей.




Иллюстраций: 18, символов: 27 399, строк кода: 99.



В спецификациях новейших телекоммуникационных проводных и беспроводных стандартов всё чаще можно встретить использование OFDM технологии. Высокую популярность обеспечивают, диктуемые временем, требования к архитектурам радиосистем. OFDM механизм обладает рядом свойств, позволяющих удовлетворять тенденциям времени. Разработанная ещё в 60-х годах прошлого века, технология стала доступна для применения лишь относительно недавно.


Материалов по тематике OFDM достаточное количество на русском языке. На Хабре, например, можно почитать хорошую статью от компании Yota. Список некоторых источников приведён в конце статьи.


Изложение материала рассчитано на читателей с разным уровнем подготовки. Поэтому, для того, чтобы говорить на общем языке, в первой половине статьи изложен вводный материал. Опытный же читатель может перейти сразу ко второй половине статьи, где речь пойдёт непосредственно об OFDM. Для тех, кого интересует только ответ на вопрос, поднятый в заголовке, можно прочитать лишь пару первых абзацев ниже.


Почему же WiMax и LTE используют OFDM?


Секрет кроется в особенностях технологии, кратко можно выделить основные положительные и отрицательные стороны:


Плюсы
  • Высокая эффективность использования радиочастотного спектра, объясняемая почти прямоугольной формой огибающей спектра при большом количестве поднесущих.
  • Простая аппаратная реализация: базовые операции реализуются методами цифровой обработки.
  • Хорошее противостояние межсимвольным помехам (ISI — intersymbol interference) и интерференции между поднесущими (ICI — intercarrier interference). Как следствие — лояльность к многолучевому распространению.
  • Возможность применения различных схем модуляции для каждой поднесущей, что позволяет адаптивно варьировать помехоустойчивость и скорость передачи информации.


Минусы
  • Необходима высокая синхронизация частоты и времени.
  • Чувствительность к эффекту Доплера, ограничивающая применение OFDM в мобильных системах.
  • Не идеальность современных приёмников и передатчиков вызывает фазовый шум, что ограничивает производительность системы.
  • Защитный интервал, используемый в OFDM для борьбы с многолучевым распространением, снижает спектральную эффективность сигнала.


Несмотря на все недостатки, OFDM является отличным решением для архитектур современных сетей, работающих в условиях мегаполиса. Технический прогресс и динамика рынка постоянно толкают производителей совершенствовать существующие технологии. В результате появляются устройства, использующие в своей основе различные модификации OFDM. Однако ядро и заложенные в него принципы остаются те же. Поверхностно основы функционирования OFDM технологии рассмотрены в данной статье.


Шаг 1. О спектрах


Расмотрим сигнал, показанный на рисунке ниже.




Для удобства приведён лишь один период (одно цикл повторения) сигнала. Сигнал представляет собой изменение во времени напряжения в какой-нибудь точке электрической цепи. Создание, передача и приём такого рода изменений и являются сутью радиоэлектроники.


Глядя на изменение во времени напряжения, можно сделать ряд выводов. Если это, например, сигнал с датчика, то график описывает динамику измеряемой величины. Однако современная радиотехника в большей степени говорит на языке спектров. Помочь осознать это понятие может рисунок ниже.




Сигнал, наблюдаемый на осциллографе (предыдущая картинка) можно разложить на элементарные колебания. Более того, любой физически наблюдаемый сигнал, можно подвергнуть такому разложению. Под элементарными колебаниями понимаются сигналы, математически описываемые функциями синус или косинус. На самом деле синус и косинус по сути один и тот же сигнал, только немного сдвинутый во времени.


Если пустить по проводу одновременно все эти элементарные сигналы, то при измерении можно увидеть первоначальный «сложный» сигнал.


Функции типа синуса называют гармоническими. Поэтому, их часто именуют в составе «сложного» сигнала гармониками. У каждого сигнала есть свой уникальный набор гармоник. Этот набор гармоник называют спектром сигнала. Изучением гармоник сигнала занимается спектральный (гармонический) анализ.


Шаг 2. Математическая форма сигнала


Инженеры и исследователи для описания сигналов и их спектров используют относительно несложную математику. Сложный сигнал записывается как сумма более простых, что показано на рисунке:




Каждая гармоника, как уже оговаривалось, представляет собой простейшее колебание, описываемое математической функцией синус. Коэффициент перед синусом называется «амплитудой», а аргумент — «фазой». Фаза есть сумма двух чисел. Первое слагаемое — произведение времени на круговую частоту, а второе слагаемое — начальная фаза. Гармоники рассматриваемого сложного сигнала имеют нулевую начальную фазу, это было подобрано для наглядности. Чтобы не спутать обычную фазу с начальной, её называют «полной фазой». Пояснения по терминам «фаза», «начальная фаза», «амплитуда», «циклическая (круговая) частота» и «функция» можно найти в учебниках по математике. Отмечу лишь, что когда встречается слово «фаза» в литературе, то под этим обычно понимают некоторое состояние, т.е. «фаза»=«состояние». В нашем случае, полная фаза сигнала-гармоники описывает некоторое состояние функции в данный момент времени. Другими словами, зная закон изменения гармоники (синус) и её текущее состояние (полную фазу) можно узнать какое сейчас значение у гармоники.


Вести записи с синусами бывает не всегда удобно. В инженерной практике обычно переходят к форме записи в вид экспонент. В этом есть некоторые плюсы. Подробнее можно посмотреть в литературе. Надо отметить, что при записи в виде экспоненты используются комплексные числа. Теория этих чисел неразрывно связана с понятием мнимой единицы. Наглядно экспоненциальную форму можно изобразить в виде вращающегося вектора, как показано на картинке выше. Вращается он с циклической частотой в плоскости, где по одной оси отложены действительные числа, а по другой мнимые. Обо всем этом также можно подробнее прочесть в математической и инженерной литературе.


Шаг 3. Преобразование Фурье


В математике существует очень важное преобразование, которое связывает сигнал и его спектр. Оно называется преобразованием Фурье. Для ясности, можно взглянуть на картинку.




В преобразование Фурье есть 2 формулы: на картинке они обведены фломастером. Прямое преобразование конвертирует сигнал в спектр, а обратное — спектр в сигнал. В формулы нужно подставлять функции, описывающие или спектр или сигнал, в зависимости от типа конвертирования. О том, почему формулы имеют именно такую форму можно опять-таки прочесть в книжках по математике. Там же можно уяснить, когда можно применять преобразование Фурье, а когда нельзя. И что делать, если нельзя применять, а спектр получить надо. Для большинства реально существующих сигналов преобразование Фурье справедливо, остальные же случаи рассматривать не будем.


После прямого преобразования сигнала, изображённого на картинке в виде затухающей экспоненты, получим его спектр. В общем случае любой спектр — это комплексное число. Выше упоминалось о числах и о форме записи сигналов в виде экспонент. В такой форме фигурируют два параметра сигнала: амплитуда и начальная фаза. Если сигнал сложный, то он состоит из нескольких гармоник, каждая гармоника имеет свою амплитуда и свою фазу. Учесть математически это просто. В экспоненциальной записи сигнала вместо обычных чисел амплитуды и начальной фазы записывают функции амплитуды от частоты и начальной фазы от частоты. Такие зависимости даёт прямое преобразование Фурье на выходе. В результате выделяют амплитудный спектр и фазовый спектр сигнала. На картинке выше изображены эти спектры. Они состоят из большого количества гармоник, поэтому рисовать их не наглядно. Обычно изображают только огибающие.


Сложные сигналы раскладывать можно не только на синусы или косинусы или, кстати, если вы заметили, экспоненты. Существуют и другие классы «элементарных» функций, в виде суммы которых можно представить сигнал. Все эти функции внутри класса обладают общим свойством — «ортогональностью». Или другими словами — перпендикулярностью. Таким образом, если взять две ортогональные функции и представить, что они не функции, а векторы, то между ними будет угол в 90 градусов. Если перемножить две эти функции, то получится нуль. Это не просто нуль, за этим нулём имеется определённый смысл: взаимная энергия между ортогональными сигналами равна нулю, т.е. они не взаимодействуют друг с другом.


Шаг 4. Быстрое преобразование Фурье


В технике есть достаточное количество методик, которые производят аналоговое преобразование Фурье. Даже есть системы которые это делают мгновенно со скоростью света. Однако в цифровой технике, где применяются дискретные сигналы, использование аналоговых преобразователей зачастую не уместно. В результате, огромную популярность получил математический алгоритм, который позволяет быстро получить спектр сигнала. Алгоритм получил название «быстрое преобразование Фурье» (Fast Fourie Transform, FFT), его упрощённая схема показана на рисунке ниже.




  1. Быстрое преобразование Фурье работает с дискретными сигналами. Дискретный сигнал — это набор чисел, взятых через определённый промежуток времени из значений аналогового сигнала.
  2. Дискретизация сигнала выполняется по определённым правилам. Это тема отдельного разговора. Кому интересно, можно поискать статьи или книги по тематике теоремы Котельникова (Шеннона). Если каждое число из набора дискретного сигнала представить в виде бинарного кода, то получится цифровой сигнал. В конечном счёте, из аналогового сигнала длительность T получается массив из N чисел (точек).
  3. Задача дискретного преобразования Фурье состоит в том, чтобы получить из массива отсчётов сигнала массив чисел спектра. Эти числа являются коэффициентами при ортогональных функциях разложения, о которых говорилось выше. Дискретную форму преобразования Фурье из аналоговой получить довольно просто. Конечный вид можно посмотреть на картинке (под номером 3).
  4. С этого момента начинается непосредственно алгоритм быстрого преобразования Фурье. Алгоритм лучшим образом работает для массивов, размер которых кратен степени двойки. Поэтому, если количество отчётов отличное от степени двойки, то их увеличивают, округляя в большую сторону, с заполнением недостающих элементов нулевыми значениями. Всю последовательность разбивают на две части: чётные и нечётные отсчёты. Длины полученных последовательностей составляют N/2.
  5. Несложными математическими преобразованиями показывается, что для отсчётов до N/2 справедлива формула, приведённая на рисунке (под номером 5).
  6. Для значений на второй половине отсчётов: от N/2 до N можно перейти также к несложной формуле. Она получается на основании периодичности коэффициентов С. В итоге полная формула для любого коэффициента C может быть записана так, как показано на рисунке (под номером 6).
  7. В данном виде алгоритм даёт некоторый выигрыш в скорости. Если из дискретного сигнала получать спектр «в лоб» (формула под номером 3 на рисунке), то на это потребуется N операций умножения на комплексное число да к тому же N сложений. И это только, чтобы получить один спектральный коэффициент, а их всего N. В конце концов, чтобы получить все коэффициенты надо выполнить N2 умножений и N2 сложений. Если использовать выражение, полученное выше (формула под номером 6 на рисунке), то потребуется 2(N/2)2+N умножений. Это почти в два раза меньше. Разбиением каждой последовательности, вплоть до двухэлементных массивов, можно ещё больше уменьшить количество вычислений, что показано на рисунке (под номером 7). Такая методика приводит примерно к N log2N операциям умножения. Например, для 1024 отсчётов количество операций умножения уменьшается в 100 раз! Это значительно упрощает применение преобразования Фурье в технике.


Шаг 5. Модуляция


Рассмотрим ещё один сложный сигнал на осциллографе.




Это аналоговый сигнал модулированный по амплитуде. О чём же идёт речь? Если ставится задача передать информацию, например, от микрофона в гарнитуре к телефону «по воздуху», то для её решения необходимо сначала считать голос (звук) и затем каким-либо способом передать его в телефон. Сейчас подобно рода задачи уже имеют множество изящных решений оптимальных по тем или иным параметра. Для наглядности можно рассмотреть пример.




На рисунке кратко описывается суть процедуры модуляции сигнала. В своей основе понятие модуляции связано с изменением какого-либо параметра одного сигнала (высокочастотного) в зависимости от другого (низкочастотного). Существует разнообразное количество схем (видов) модуляции, которые позволяют передавать сигнал наилучшим образом в той или иной ситуации, но всё сводится к изменению либо амплитуды, либо частоты или начальной фазы сигнала.


Низкочастотный сигнал несёт информацию. Например, в нашем случае, для простоты, это какой-нибудь однотональный звук, т.е. простой сигнал. В зависимости от амплитуды этого сигнала изменяется огибающая высокочастотного сигнала. Высокочастотный сигнал называется «несущим», в том смысле, что он переносит (несёт) информацию. Иногда можно передавать информационный сигнал без процедуры модуляции. В реальности же сигналы передаются через какую-нибудь физическую среду, да ещё и в условиях помех. Для того чтобы в этом случае успешно передать сигнал и применяется модуляция.


Убедится в пользе модуляции можно проделав некоторые расчёты. Известно, что сигналы «по воздуху» передаются в основном с помощью электромагнитных полей, в которых распространяются волны. Излучаются и принимаются волны антеннами. Волны характеризуются «длиной волны». Данная величина обратна частоте волны, которая соответствует частоте передаваемого сигнала. Очевидно, что чем частота больше, тем меньше длина волны. Размеры антенн зависят от длин волн с которыми они работают. Поэтому чем больше частота сигнала, тем меньшего размера нужна антенна. Например, если попытаться передать из гарнитуры в телефон звук 'До' 5-ой октавы (это 4186.0 Гц), то размер антенны составит порядка 18 км длиной. А если использовать частоты из спецификации Bluetooth (около 2.4 ГГц), то размер антенны будет всего лишь 3 см. Конечно расчёты оценочные, но результат позволяют убедиться в пользе модуляции.


Как уже говорилось, схем модуляции существует большое количество. Однако цифровые схемы модуляции немного отличаются от аналоговых, частично рассмотренные выше. Поэтому следует обратить внимание и на них. Как и в аналоговых схемах, всё сводится к изменению в основном трёх параметров: частоты, фазы и амплитуды, за исключением того, что параметры меняются скачками. Такого рода модуляцию называют «манипуляцией» (англ. shift key). На рисунке ниже представлены схемы амплитудной (ASK), частотной (FSK) и фазовой (PSK) манипуляций.




В современных системах связи большую популярность получила разновидность амплитудной манипуляции QAM (квадратурная). Суть которой заключается в синтезе сигнала из суммы двух простых сигналов, разница фаз межу которыми 90 градусов (они находятся в квадратуре). Амплитуды этих простых сигналов меняются дискретно, что, в конечном счете, образует сигнал с дискретным изменением и амплитуды и фазы одновременно. Удобно изобразить все возможные состояния на фазовой плоскости. На рисунке выше такая плоскость приведена для модуляции 16-QAM, т.е. 16 различных состояний может быть закодировано одним символом QAM модуляции, что соответствует 4-битам информации. Кстати, исходя из таких соображений — фазовую манипуляцию можно рассматривать как частный случай. Например, QPSK манипуляция может быть названа как 4-QAM. Таким образом, можно изменяя схему манипуляции увеличивать или уменьшать скорость потока данных. Однако, увеличивая скорость, приходится жертвовать помехоустойчивостью. В различных каналах связи применяется «золотая середина». Наряду с неоспоримыми плюсами у QAM есть и недостатки. Рассмотренные схемы модуляции часто не используются в чистом виде. Обо всём этом можно прочитать в книгах по современным системам связи.


Шаг 6. Мультиплексирование


Разработчики систем телекоммуникаций сталкиваются с постоянной проблемой ограниченного ресурса среды передачи, будь то время, пространство, частота или код. Поэтому, при необходимости передачи нескольких потоков данных для одного пользователя или для нескольких приходится решать задачу множественного доступа к середе. Другими словами необходимо так уплотнить потоки или спроектировать такой алгоритм, чтобы лучшим образом организовать связь в имеющихся условиях. В литературе данную проблему именуют и как мультиплексирование и как уплотнение и как множественный доступ (MAC).


Пространственное разделение потоков можно считать относительно простым решением задачи. Примером такого разделения может служить технология MIMO (англ. Multiple Input Multiple Output), которая повсеместно внедряется во все современных стандарты сетей. Суть заключается в использование нескольких антенн, которые разносят друг от друга, чтобы они не мешали передачи. Рекорды скорости обмена данными «по воздуху» в основном сейчас бьются именно из-за этой технологии. Также наиболее простым примером пространственного разделения может служить ограничение мощности передатчиков или адаптивное изменение диаграмм направленности антенн. О том, что это и обо все тонкостях методик можно почитать в специальной литературе.


Более распространённой является методика частотного уплотнения или FDM (Frequency Division Multiplexing). Благодаря этой методике огромное количество устройств функционируют на одной территории. На рисунке ниже приведён принцип уплотнения.




Эта диаграмма показывает, как распределяется частотно-временной и энергетический ресурс между потоками, обозначенными разыми цветами. Одним из минусов является необходимость между потоками оставлять частотные промежутки, чтобы исключить взаимные помехи, что не лучшим образом использует частотный ресурс.


Более гибкой является техника временного уплотнения или TDM (Time Division Multiplexing). Ниже представлено её диаграмма.




При этом передатчик использует только одну частоту, но для каждого потока используется свой интервал времени. Данная методика очень требовательна к синхронизации между приёмником и передатчиком. TDM удобна для динамичного изменения потоков, например, если какому-нибудь потоку (абоненту) нужно повысить трафик, то достаточно лишь для него сделать интервал подлиннее. Наиболее известным стандартом, использующим TDM, является GSM.


Следует обратить внимание на кодовую методику уплотнения или CDM (Code Division Multiplexing). У неё интересная диаграмма.




Потоки сосуществуют в одном частотно-временном интервале. Для кодирования каждого потока применяются специальные коды. Коды CDM представляют собой ортогональные сигналы, на которые раскладываются символы первоначальной последовательности. Почему так можно делать, говорилось выше. Это одна из методик уширения спектра. Шумоподобные сигналы и методики уширения спектра являются интересными направлениями в телекоммуникациях. Интересующиеся могут посмотреть дополнительный материал в литературе.


Существуют различные модификации методики CDM. К примеру, смесь CDM и FMD дают FHSS (Frequency Hopping Spread Spectrum), а с TDM технику THSS (Time Hopping Spread Spectrum). Модификации, обладая уникальными свойствами, открывают широкие горизонты применения CDM. К примеру, FHSS применяется в Bluetooth. Ещё одной производной CDM и FDM является, рассматриваемый в статье, метод OFDM.


Для более корректной терминологии нужно уточнить, что методику уплотнения с целью множественного доступа к среде нескольких пользователей именуют в англоязычной литературе как multiple access, поэтому такие техники называются FDMA, TDMA, CDMA, OFDMA и т.д. О других технологиях уплотнения и множественного доступа можно почитать дополнительно в книгах.


Шаг 7. OFDM


В технологии OFDM частотный диапазон разбивается равномерно между поднесущими (дополнительные несущие), количество которых может доходить до нескольких тысяч. Каждому передаваемому потоку назначается несколько таких поднесущих, т.е. каждый поток разбивается на N поднесущих. Поднесущие между собой ортогональны. Эта особенность определяет многие положительные качества техники OFDM. Смысл понятия ортогональности описывался выше. Для ясности можно взглянуть на рисунок ниже.




Популярный стандарт, использующий OFDM технологию — система цифрового телевещания DVB. Данная система, кстати, будет использована как стандарт российского цифрового телевидения. Особенности и принцип формирования OFDM сигнала рассмотрим на его примере, точнее на его модификации для наземного вещания DVB-T.

  1. В DVB-T сигнал перед разделением между поднесущими предварительно кодируется различными кодерами для повышения помехоустойчивости. Особенности стандарта трогать не будем. Посмотрим лишь специфику формирования OFDM.
  2. Сигнал DVB-T занимает полосу в 8 МГц (7, 6 МГц). Данная полоса разбивается между поднесущими. Расстояние в спектре сигнала между поднесущими обратно пропорционально длительности одного OFDM символа.

  3. Для борьбы с помехами в OFDM включён защитный интервал. Это возможно сделать, т.к. быстрый поток данных делится между поднесущими, на каждой из которых скорость подпотока меньше первоначальной. За счёт этого можно выделить отрезок времени, который будет защищать основной сигнал от помех. Длительность этого защитного интервала может составлять 1/4, 1/8, 1/16 или 1/32 от длительности OFDM символа. На рисунке поясняется принцип использования временного защитного интервала.



    Межсимвольная интерференция является одной из разновидностей помех, она появляется в результате взаимодействия пакетов (символов) передаваемых данных, например, вследствие многолучевого распространения сигнала, вызванного переотражением. Обычно в качестве защитного интервала используют так называемый циклический префикс, являющийся копией окончания сигнала размещённой впереди. Это позволяет сохранить ортогональность. Чем дольше защитный интервал, тем в более сложных условиях может передаваться OFDM сигнал. Подробнее вопрос можно разобрать в литературе.
  4. Ортогональность поднесущих позволяет системам хорошо справляться с узкополосными помехами, которые могут подавить часть поднесущих. Благодаря корректирующим кодам информацию можно извлечь из неповреждённых поднесущих. Помимо этого, в OFDM каждая поднесущая может модулироваться различной схемой модуляции, например, QPSK, 16-QAM или 64-QAM. Как отмечалось выше, в таком подходе можно адаптивно регулировать помехоустойчивость и скорость потока данных для каждого канала (пользователя) в отдельности.
  5. Технической реализации OFDM не было долгое время, поскольку решение задачи аналоговыми методами весьма проблематично. С появлением быстрых вычислительных систем задача была реализована с помощью цифровых методов обработки сигналов. В основе подхода лежит преобразование Фурье, а точнее алгоритм быстрого преобразования Фурье. Синтетическим методом создаётся спектр сигнала, из которого обратным быстрым преобразованием Фурье (IFFT) получается аналоговый сигнал. Спектр такого сигнала уже состоит из ортогональных поднесущих, этот факт получается по определению преобразования Фурье. Об этом также упоминалось выше. На рисунке схематично показана архитектура типового приёмника и передатчика OFDM.



    Непосредственное формирование сигнала после цифрового синтеза, который затем передаётся в антенну для излучения, происходит аналогично схеме QAM модуляции. В отдельности формируются квадратурные сигналы как мнимая и реальная часть синтезируемого сложного сигнала, а затем происходит его «сборка» и передача в антенну. Подробности функционирования можно прочитать в дополнительной литературе.
  6. В виду того, что алгоритм FFT/IFTT работает эффективно c выборками размерности кратными степеням двойки, то количество поднесущих в OFDM используется аналогичной кратности. К примеру, в DVB-T существует два режима 8k и 2k, название которых указывает на количество используемых поднесущих: 8000 и 2000 соответственно. На самом же деле используется их 8192 (213) и 2048 (211), а если быть более точным, то 1705 и 6817, остальные не используются. Наглядно можно промоделировать формирование OFDM сигнала DVB-T в MatLAB:


  1. %DVB-T 2K Transmission
  2. %Доступная полоса 8 MHz
  3. %2K для мобильных сервисов
  4. clear all;
  5. close all;
  6. %DVB-T Параметры
  7. Tu=224e-6; %полезный период OFDM символа
  8. T=Tu/2048%элементарный период
  9. G=1/4%выбирается 1/4, 1/8, 1/16, и 1/32
  10. delta=G*Tu; %защитный интервал
  11. Ts=delta+Tu; %полный период OFDM символа
  12. Kmax=1705% максимальное количество поднесущих
  13. Kmin=0;
  14. FS=4096%IFFT/FFT длина
  15. q=10%период поднесущей
  16. fc=q*1/T; %частота несущей
  17. Rs=4*fc; %период симуляции
  18. t=0:1/Rs:Tu;
  19.  
  20. %Генерация данных
  21. M=Kmax+1;
  22. rand('state',0);
  23. a=-1+2*round(rand(M,1)).'+i*(-1+2*round(rand(M,1))).';
  24. A=length(a);
  25. info=zeros(FS,1);
  26. plot(info);
  27. info(1:(A/2)) = [ a(1:(A/2)).'];
  28. info((FS-((A/2)-1)):FS) = [ a(((A/2)+1):A).'];
  29.  
  30. %Генерация поднесущих
  31. carriers=FS.*ifft(info,FS);
  32. tt=0:T/2:Tu;
  33. figure(1);
  34. subplot(211);
  35. stem(tt(1:20),real(carriers(1:20)));%реальная часть обратного преобразования фурье
  36. subplot(212);
  37. stem(tt(1:20),imag(carriers(1:20)));%мнимая часть обратного преобразования фурье
  38. figure(2);
  39. f=(2/T)*(1:(FS))/(FS);
  40. subplot(211);
  41. plot(f,abs(fft(carriers,FS))/FS);
  42. subplot(212);
  43. pwelch(carriers,[],[],[],2/T);
  44.  
  45. % Симуляция ЦАП
  46. L = length(carriers);
  47. chips = [ carriers.';zeros((2*q)-1,L)]%чипы
  48. p=1/Rs:1/Rs:T/2;
  49. g=ones(length(p),1);
  50. figure(3);
  51. stem(p,g)
  52.  
  53. dummy=conv(g,chips(:))%свёртка
  54. u=[dummy(1:length(t))]
  55. figure(4);
  56. subplot(211);
  57. plot(t(1:400),real(u(1:400)));
  58. subplot(212);
  59. plot(t(1:400),imag(u(1:400)));
  60.  
  61. figure(5);
  62. ff=(Rs)*(1:(q*FS))/(q*FS);
  63. subplot(211);
  64. plot(ff,abs(fft(u,q*FS))/FS);
  65. subplot(212);
  66. pwelch(u,[],[],[],Rs);
  67.  
  68. [b,a] = butter(13,1/20)%создаём фильтр
  69. [H,F] = FREQZ(b,a,FS,Rs);
  70. figure(6);
  71. plot(F,20*log10(abs(H)));
  72. uoft = filter(b,a,u)%фильтруем сигнал 
  73.  
  74. figure(7);
  75. subplot(211);
  76. plot(t(80:480),real(uoft(80:480)));
  77. subplot(212);
  78. plot(t(80:480),imag(uoft(80:480)));
  79.  
  80. figure(8);
  81. subplot(211);
  82. plot(ff,abs(fft(uoft,q*FS))/FS);
  83. subplot(212);
  84. pwelch(uoft,[],[],[],Rs);
  85.  
  86. %Upconverter
  87. s_tilde=(uoft.').*exp(1i*2*pi*fc*t);
  88. s=real(s_tilde);
  89. figure(9);
  90. plot(t(80:480),s(80:480));
  91. figure(10);
  92. subplot(211);
  93. %plot(ff,abs(fft(((real(uoft).').*cos(2*pi*fc*t)),q*FS))/FS);
  94. %plot(ff,abs(fft(((imag(uoft).').*sin(2*pi*fc*t)),q*FS))/FS);
  95. plot(ff,abs(fft(s,q*FS))/FS);
  96. subplot(212);
  97. %pwelch(((real(uoft).').*cos(2*pi*fc*t)),[],[],[],Rs);
  98. %pwelch(((imag(uoft).').*sin(2*pi*fc*t)),[],[],[],Rs);
  99. pwelch(s,[],[],[],Rs);


Автором кода моделирования является коллега из США Guillermo Acosta. Результаты моделирования можно посмотреть на рисунке:




Шаг 8. Виды OFDM



Ниже приведён список различных модификаций технологии OFDM, которые можно встретить в литературе.


  1. COFDM (Coded OFDM). Данный вид OFDM отличается лишь тем, что данные предварительно кодируются корректирующими кодами. В DVB-T кстати, используется именно этот вид OFDM.
  2. Flash OFDM (Fast low-latency access with seamless handoff OFDM). Эта модификация была разработана компанией Flarion Technologies. Техника заточена под мобильные устройства. Все особенности модификации заключаются в алгоритмах работы с коммутацией пакетов данных. Дополнительную информацию можно найти в Интернете, технология достаточно неплохо описана.
  3. OFDMA. Модификация уже упоминалась выше. Это многопользовательский вариант OFDM технологии.
  4. VOFDM (Vector OFDM). Данную модификацию курирует компания Cisco Systems. В основе лежит концепция технологии MIMO. Сюда же можно отнести MIMO-OFDM.
  5. WOFDM (Wideband OFDM). Широколопосная модификация OFDM разработанная Wi-LAN Inc. В модификации достигается повышение пропускной способности и помехоустойчивости. Основное отличие в большем частотном расстояние между несущими.


Среди рассмотренных систем большую популярность получили классическая OFDM схема и COFDM модификация.

Шаг 9. Заключение


В данной статье дан лишь поверхностный обзор технологии OFDM. Многие вопросы, включая синхронизацию сигналов, тонкости при формировании непосредственного сигнала, а также цифровой обработке оставлены на самостоятельное рассмотрение. Целью данной статьи было изложить теоритические основы OFDM, привести особенности, а самое главное рассказать максимально просто и понятно, но в тоже время, не упуская существенных деталей. Найти ответы на появившиеся вопросы поможет список книг и статей ниже.


Шаг 10. Почитать


  1. OFDM-Based Broadband Wireless Networks. Design and Optimization. Hui Liu and Guoqing Li
  2. Multi-Carrier and Spread Spectrum Systems. From OFDM and MC-CDMA to LTE and WiMAX. K. Fazel, S. Kaiser
  3. OFDM. Concepts for Future Communication Systems. Hermann Rohling
  4. Современные технологии беспроводной связи. И. Шахнович
  5. Теория электрической связи. Зюко А. Г.
  6. Цифровая связь. Теоретические основы и практическое применение. Скляр Б.
  7. Радиотехнические цепи и сигналы. Гоноровский И. С.
  8. Радиотехнические цепи и сигналы. Баскаков С. И.
  9. Справочник по математике для научных работников и инженеров. Корн Г.А., Корн Т.М.
  10. MATLAB и быстрое преобразование Фурье (ViruScD).
  11. О технологиях мультиплексирования для технологий беспроводной связи (eucariot).


P.S. Соблюдайте правила ресурса и условия Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Поделиться публикацией
Похожие публикации
AdBlock похитил этот баннер, но баннеры не зубы — отрастут

Подробнее
Реклама
Комментарии 61
  • +25
    Проснулся утром в воскресенье и прочитал всё сначала и до конца.
    • +6
      Фантастика…
      • +10
        А еще спасибо Автору за то, что поднял мне планку — я готовлю статью и понял, что ее еще надо серьезно доделывать.
      • +13
        И снова автор написал идеальную статью. Браво!
        • +9
          Мне одному иногда не хватает кнопки +10?
          • +9
            Тут нужна кнопка 0-1
            • 0
              Кнопка "+0"? Эта оценка, вроде, выставляется, если щелкнуть по четрочке между стрелкой вверх и стрелкой вниз.
              • +18
                0-1 = 1/0 = ∞
                Ваш кэп.
                • 0
                  Спасибо.
                  • +7
                    К сожалению, это ±∞.
                    Поэтому каждое нажатие кнопки будет либо возносить автора на пьедестал, либо банить.
                    • 0
                      тогда (0^-1)^2
                      • +1
                        А эта операция не определена в классической математике.
                        Потому как (a^b)^c должно быть эквивалентно (a^c)^b.

                        Но по уже написанному (0^-1)^2 должен бы быть строго +∞, а в то же время (0^2)^-1 даст нам ±∞.
                        Поэтому для сохранения мозга математиков внутри черепа принято ограничение, запрещающее возводить бесконечности в степень.

                        (В математике с Гросс-единицей это не так, но я же уже предупреждал про мозги и череп?)
                • НЛО прилетело и опубликовало эту надпись здесь
                  • 0
                    Простите, зафейлил :)
            • 0
              Вы неправы — тут легкий юмор :)
              www.wolframalpha.com/input/?i=0+^-1
              • 0
                Простите — промазал. Это касалось:
                > Кнопка "+0"? Эта оценка, вроде, выставляется, если щелкнуть по четрочке между стрелкой вверх и стрелкой вниз.
              • +5
                С помощью чего были сделаны рисунки на клетчатой бумаге?
              • +4
                Ваши статьи стоит использовать как руководство по оформлению блогозаписей на Хабрахабре. Хочется перечитывать и перечитывать! :)
                • +3
                  Статья очень хорошо излагает основы радиофизики для тех, кто впервые видит это (тут +1). Для тех, у кого это профильное образование, конечно, достаточно было начать с фразы: «OFDM — это такая система частотного разделения каналов...». За программу отдельное спасибо.
                  • +4
                    Великолепная статья.
                    В прошлом году когда в универе разбирали преобразование Фурье я сделал флэшку которая показывает поэтапное вычисление быстрого преобразования Фурье и выводит это все в виде графа бабочки, как это называл наш препод, а так же рисует графики спектра и заданной последовательности. Можно глянуть тут ae0n.name/butterfly/ может кому-то полезно будет. Данные можно вводить руками или генерировать простую последовательность.
                    • 0
                      Спасибо. Понятие графа «бабочка» — общепринятое. Спасибо за флешку — наглядно. Импорт бы из файла туда ещё…
                      • +2
                        Не могу отказать, сделал импорт из файла. Данные в файле разбить необходимо переносами строк или ',' или ';'.
                        Адрес прежний.
                        • 0
                          +1. Спасибо вам.
                    • +1
                      Класс.
                      • +1
                        Спасибо вам большое. То ли я вырос, то ли изучение Д. Кнута как-то способствует, но я в конце концов понял всю эту тему, связанную с преобразованиям Фурье.) В институте так до конца и не мог разобраться.
                        • +5
                          Хотелось бы просто поблагодарить автора за тот труд, который он счел нужным сделать достоянием общественности.
                          Такие, я не побоюсь этого слова, таланты, обязательно будут замечены и соответствующим образом оценены.

                          Без преувеличений, написать просто и красиво о сложном — это огромный труд с которым ты явно справляешься на отлично.
                          Качество иллюстративного оформления статей вообще на новом для хабра уровне.
                          Искренне желаю тебе успехов и новых статей, которые, я надеюсь, уже будут приносить тебе не только моральное, но и выраженное в материальных ценностях удовлетворение ;)
                          • 0
                            вот только png с прозрачным фоном приводят к тому, что в read it later картинки открываются на черном фоне. Весьма проблематично что-то прочесть.

                            • 0
                              Большое вам спасибо за поддержку. А какие альтернативы с оформлением рисунков? Рад буду любым идеям. Просто людям, дающим репосты, будет намного проще вписать в собственный дизайн рисунки с прозрачным фоном.
                              • 0
                                Я вижу только один рабочий вариант — делать фон белым, у большинства адекватных изданий бэкграунд именно белый, как самый удобоваримый для читателя. Но для покрытия широких масс wordpress блогов лучшего варианта, чем прозрачный фон, согласен, нет. Вот только стоит ли оно того?

                                Если по-хорошему, то кросспостеры должны дать ссылку на хабр ;)
                                Я просто заметил, поместив топик в read it later, что фон по-умолчанию у них черный, что явно неудобно.
                                • 0
                                  Есть еще вариант: воокруг текста и рисунков можно делать белый бордюр. На белом фоне он будет невидим, а на черном, или зеленом отделит содержимое от фона. Как-то так:
                                  • 0
                                    * воокруг -> вокруг
                                    • 0
                                      Спасибо. Идея хорошая, правда картинка немного по другому будет выглядеть с тёмным фоном.
                              • 0
                                меня немного смутила строчка на втором клетчатом листочке j-мнимая единица, sqrt(j)=-1. но это мелочь и большей частью статья великолепна :)
                                • 0
                                  спасибо за внимательность, так был увлечён рисованием значка радикала, что не заметил как напсиал ересь )) Поправил.
                                • +4
                                  Инфографика бесподобна!
                                  • 0
                                    Статья супер (заметил маленькую опечатку--вместо Frequency Hoping Spread Spectrum и подобных сочетаний должно быть Frequency HopPing Spread Spectrum).
                                    • 0
                                      Спасибо за внимательность. Исправил.
                                    • +3
                                      Если не секрет, сколько времени занимает (помимо написания текста) подготовка материала для статьи? У меня гораздо более скромное оформление, но и там сижу часами )

                                      По статье — не самая интересная для меня тема, но прочитал на одном дыхании — браво!
                                      • +5
                                        Подготовка материала занимает различное время. Всё зависит от объёма. Трудно из большого количества информации выделить основной стержень, который бы не перегружал читателя, но в тоже время нёс какую-нибудь пользу. В этой статье я использовал новый для себя подход: специально внёс избыточный материал, чтобы статья была более-менее интересна и для новичков и для опытных читателей. Если есть план статьи — задача порядком упрощается. Хотя порой во время написания возникают идеи, которые хочется тоже изложить и план приходится менять. Это немного не профессионально и сбивает всю работу. Избавиться от этого поможет кропотливая предварительная работа над материалом. Я сейчас сам учусь этим тонкостям. Дальше я рисую. Я далеко не дизайнер и не художник и на этом у меня уходит значительное время. Ну и, в конечном счёте, пишу текст. Обычно я материал разбиваю на «шаги» или разделы. Порциями, по моему мнению, информация усваивается лучше. Каждый «шаг» содержит законченную мысль. Качество текста и время написания зависит от вдохновения. Если говорить о часах, то тут всё зависит от свободного времени. Если его много, но написать залпом лучше и качественнее, чем растягивать по чуть-чуть на несколько вечеров написание текста. Например, прошлую мою статью о чтение QR кодов я написал с рисунками за 4 часа. Правда, предварительно я не одну неделю занимался чтением кодов с листочком бумаги. И только после того, как убедился, что начал в этом что-то понимать – принялся за статью. В этой статье времени на подготовку материала ушло не так много. Больше всего затрат было с рисунками и текстом (дольше всего рисовал осциллограф). Готовил статью в течение двух недель в виду того что не было свободного времени.
                                        • +1
                                          Ну что могу сказать, круто! :) Статьи на энтузиазме обычно самые удачные и интересные — надеюсь, реакция читателей только подливает масла в этот огонь ) С удовольствием почитаю про что-нибудь еще!
                                          • 0
                                            Сейчас готовлю ещё одну статью. Там будет чуть больше математике чем здесь.
                                            • 0
                                              *математике=математики
                                      • +1
                                        Супер, пишите ещё! :)
                                        • 0
                                          обязательно…
                                        • +2
                                          Этот топик достоин хабра.
                                          • +1
                                            Адски плюсую!
                                            • +3
                                              Автор решил захватить всю ТОП-10 топиков? :)
                                              • +2
                                                Всегда относился с уважением к людям, которые хорошо понимают физику. В данном случае тут и физика и матан на очень хорошем уровне, поставил плюсов, сколько смог :)
                                                • +1
                                                  Это талант! Жаль нельзя повторно плюсануть в карму.
                                                  • +2
                                                    А каким образом автор столь красиво оформил вычисления?
                                                    • 0
                                                      я не могу понять суть вопроса. Если вы о математических символах, то всё в пределах ASCII.
                                                    • 0
                                                      Нет, это я понимаю, но как вы делали красивые рисунки на клеточках и стрелки связи?
                                                    • +1
                                                      Ооооочень круто! Спасибо автору!
                                                      • 0
                                                        неплохо написано, вам бы учебники писать :)
                                                        единственное — имхо, иллюстрации с формулами в начале статью стоит делать с шрифтом покрупнее и без карандашей и маркеров, мы ж вроде не совсем в детском саду :)
                                                        • +1
                                                          Спасибо. В следующий раз учту размер шрифта. А карандаши и маркеры добавлял для того, чтобы не совсем было сухо читать материал.
                                                        • +1
                                                          Это пять, жму руку!
                                                          • 0
                                                            Что все про эти длинные антенны чушь пишут, попробуйте сделать антенну от 0 до NГц, а вот если сместить этот диапазон высоких частот, эта задача сильно упрощается.
                                                            В остальном обзор обзор для старта отличный.
                                                            • 0
                                                              Хороший пост.
                                                              Было бы полезно упомянуть, что WiMax OFDM реализует MI-MIMO и может передавать данные разным клиентам на разных поднесущих: habrahabr.ru/blogs/sandbox/132247/
                                                              • 0
                                                                Вам бы учебники писать. Учусь на похожей специальности, далеко нашим профессорам до искусства объяснять простыми словами сложные вещи.

                                                                Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.