• Как работает GIL в Ruby. Часть 2

    • Перевод
    В прошлый раз я предложил заглянуть в код MRI, чтобы разобраться с реализацией GIL и ответить на оставшиеся вопросы. Что мы сегодня и сделаем.

    Черновая версия этой статьи изобиловала кусками кода на C, однако, из-за этого суть терялась в деталях. В финальной версии почти нет кода, а для любителей поковыряться в исходниках я оставил ссылки на функции, которые упоминал.

    В предыдущей серии


    После первой части остались два вопроса:

    1. Делает ли GIL array << nil атомарной операцией?
    2. Делает ли GIL код на Ruby потокобезопасным?

    На первый вопрос можно ответив, взглянув на реализацию, поэтому начнем с него.
    Читать дальше →
    • +20
    • 7,5k
    • 3
  • Как работает GIL в Ruby. Часть 1

    • Перевод
    Пять из четырех разработчиков признают, что многопоточное программирование понять непросто.

    Большую часть времени, что я провел в Ruby-сообществе, печально известная GIL оставалась для меня темной лошадкой. В этой статье я расскажу о том, как наконец познакомился с GIL поближе.

    Первое, что я услышал о GIL, никак не было связано с тем, как она работает или для чего нужна. Все, что я услышал — что GIL — это плохо, поскольку ограничивает параллелизм, или то, что это хорошо, потому что делает код потокобезопасным. Пришло время, я приноровился к многопоточному программированию и понял, что на самом деле все сложнее.

    Я хотел знать, как работает GIL с технической точки зрения. На GIL нет ни спецификации, ни документации. По сути, это особенность MRI (Matz's Ruby Implementation). Команда разработчиков MRI ничего не говорит по поводу того, как GIL работает и что гарантирует.

    Впрочем, я забегаю вперед.
    Читать дальше →
  • Повышаем безопасность закрытых ssh-ключей

    • Перевод
    Вы когда-нибудь интересовались механизмом работы ssh-ключей? Или тем, насколько безопасно они хранятся?

    Я использую ssh каждый день много раз — когда запускаю git fetch или git push, когда развертываю код или логинюсь на сервере. Не так давно я осознал, что для меня ssh стал магией, которой я привык пользоваться без понимация принципов ее работы. Мне это не сильно понравилось — я люблю разбираться в инструментах, которые использую. Поэтому я провел небольшое исследование и делюсь с вами результатами.

    По ходу изложения встретится много аббревиатур. Они не помогут понять идеи, но будут полезны в том случае, если вы решите погуглить подробности.

    Итак, если вам доводилось прибегать к аутентификации по ключу, то у вас, скорее всего, есть файл ~/.ssh/id_rsa или ~/.ssh/id_dsa в домашнем каталоге. Это закрытый (он же приватный) RSA/DSA ключ, а ~/.ssh/id_rsa.pub или ~/.ssh/id_dsa.pub — открытый (он же публичный) ключ. На сервере, на котором вы хотите залогиниться, должна быть копия открытого ключа в ~/.ssh/authorized_keys. Когда вы пытаетесь залогиниться, ssh-клиент подтвержает, что у вас есть закрытый ключ, используя цифровую подпись; сервер проверяет, что подпись действительна и в ~/.ssh/authorized_keys есть открытый ключ, и вы получаете доступ.

    Что же хранится внутри закрытого ключа?

    Читать дальше →
  • Структуры данных: двоичная куча (binary heap)

    Двоичная куча (binary heap) – просто реализуемая структура данных, позволяющая быстро (за логарифмическое время) добавлять элементы и извлекать элемент с максимальным приоритетом (например, максимальный по значению).

    Для дальнейшего чтения необходимо иметь представление о деревьях, а также желательно знать об оценке сложности алгоритмов. Алгоритмы в этой статье будут сопровождаться кодом на C#.

    Введение


    Двоичная куча представляет собой полное бинарное дерево, для которого выполняется основное свойство кучи: приоритет каждой вершины больше приоритетов её потомков. В простейшем случае приоритет каждой вершины можно считать равным её значению. В таком случае структура называется max-heap, поскольку корень поддерева является максимумом из значений элементов поддерева. В этой статье для простоты используется именно такое представление. Напомню также, что дерево называется полным бинарным, если у каждой вершины есть не более двух потомков, а заполнение уровней вершин идет сверху вниз (в пределах одного уровня – слева направо).



    Читать дальше →