Pull to refresh
77
0
Михаил Сурцуков @iphysic

Пользователь

Send message

Знакомство с Neural ODE

Reading time 20 min
Views 35K

Neural Ordinary Differential Equations


Значительная доля процессов описывается дифференциальными уравнениями, это могут быть эволюция физической системы во времени, медицинское состояние пациента, фундаментальные характеристики фондового рынка и т.д. Данные о таких процессах последовательны и непрерывны по своей природе, в том смысле, что наблюдения — это просто проявления какого-то непрерывно изменяющегося состояния.

Есть также и другой тип последовательных данных, это дискретные данные, например, данные NLP задач. Состояния в таких данных меняется дискретно: от одного символа или слова к другому.

Сейчас оба типа таких последовательных данных обычно обрабатываются рекуррентными сетями, несмотря на то, что они отличны по своей природе, и похоже, требуют различных подходов.

На последней NIPS-конференции была представлена одна очень интересная статья, которая может помочь решить эту проблему. Авторы предлагают подход, который они назвали Нейронные Обыкновенные Дифференциальные Уравнения (Neural ODE).

Здесь я постарался воспроизвести и кратко изложить результаты этой статьи, чтобы сделать знакомство с ее идеей чуть более простым. Мне кажется, что эта новая архитектура вполне может найти место в стандартном инструментарии дата-сайентиста наряду со сверточными и рекуррентными сетями.


Читать дальше →
Total votes 79: ↑76 and ↓3 +73
Comments 6

Автоэнкодеры в Keras, часть 6: VAE + GAN

Reading time 12 min
Views 21K

Содержание



В позапрошлой части мы создали CVAE автоэнкодер, декодер которого умеет генерировать цифру заданного лейбла, мы также попробовали создавать картинки цифр других лейблов в стиле заданной картинки. Получилось довольно хорошо, однако цифры генерировались смазанными.

В прошлой части мы изучили, как работают GAN’ы, получив довольно четкие изображения цифр, однако пропала возможность кодирования и переноса стиля.

В этой части попробуем взять лучшее от обоих подходов путем совмещения вариационных автоэнкодеров (VAE) и генеративных состязающихся сетей (GAN).

Подход, который будет описан далее, основан на статье [Autoencoding beyond pixels using a learned similarity metric, Larsen et al, 2016].



Иллюстрация из [1]
Читать дальше →
Total votes 37: ↑37 and ↓0 +37
Comments 7

Автоэнкодеры в Keras, Часть 5: GAN(Generative Adversarial Networks) и tensorflow

Reading time 9 min
Views 31K

Содержание



(Из-за вчерашнего бага с перезалитыми картинками на хабрасторейдж, случившегося не по моей вине, вчера был вынужден убрать эту статью сразу после публикации. Выкладываю заново.)

При всех преимуществах вариационных автоэнкодеров VAE, которыми мы занимались в предыдущих постах, они обладают одним существенным недостатком: из-за плохого способа сравнения оригинальных и восстановленных объектов, сгенерированные ими объекты хоть и похожи на объекты из обучающей выборки, но легко от них отличимы (например, размыты).

Этот недостаток в куда меньшей степени проявляется у другого подхода, а именно у генеративных состязающихся сетейGAN’ов.

Формально GAN’ы, конечно, не относятся к автоэнкодерам, однако между ними и вариационными автоэнкодерами есть сходства, они также пригодятся для следующей части. Так что не будет лишним с ними тоже познакомиться.

Коротко о GAN


GAN’ы впервые были предложены в статье [1, Generative Adversarial Nets, Goodfellow et al, 2014] и сейчас очень активно исследуются. Наиболее state-of-the-art генеративные модели так или иначе используют adversarial.

Схема GAN:



Читать дальше →
Total votes 25: ↑25 and ↓0 +25
Comments 9

Автоэнкодеры в Keras, Часть 4: Conditional VAE

Reading time 11 min
Views 21K

Содержание



В прошлой части мы познакомились с вариационными автоэнкодерами (VAE), реализовали такой на keras, а также поняли, как с его помощью генерировать изображения. Получившаяся модель, однако, обладала некоторыми недостатками:

  1. Не все цифры получилось хорошо закодировать в скрытом пространстве: некоторые цифры либо вообще отсутствовали, либо были очень смазанными. В промежутках между областями, в которых были сконцентрированы варианты одной и той же цифры, находились вообще какие-то бессмысленные иероглифы.

    Что тут писать, вот так выглядели сгенерированные цифры:

    Картинка


  2. Сложно было генерировать картинку какой-то заданной цифры. Для этого надо было смотреть, в какую область латентного пространства попадали изображения конкретной цифры, и сэмплить уже откуда-то оттуда, а тем более было сложно генерировать цифру в каком-то заданном стиле.

В этой части мы посмотрим, как можно лишь совсем немного усложнив модель преодолеть обе эти проблемы, и заодно получим возможность генерировать картинки новых цифр в стиле другой цифры – это, наверное, самая интересная фича будущей модели.


Читать дальше →
Total votes 29: ↑29 and ↓0 +29
Comments 12

Автоэнкодеры в Keras, Часть 3: Вариационные автоэнкодеры (VAE)

Reading time 10 min
Views 46K

Содержание



В прошлой части мы уже обсуждали, что такое скрытые переменные, взглянули на их распределение, а также поняли, что из распределения скрытых переменных в обычных автоэнкодерах сложно генерировать новые объекты. Для того чтобы можно было генерировать новые объекты, пространство скрытых переменных (latent variables) должно быть предсказуемым.

Вариационные автоэнкодеры (Variational Autoencoders) — это автоэнкодеры, которые учатся отображать объекты в заданное скрытое пространство и, соответственно, сэмплить из него. Поэтому вариационные автоэнкодеры относят также к семейству генеративных моделей.


Читать дальше →
Total votes 48: ↑47 and ↓1 +46
Comments 15

Автоэнкодеры в Keras, Часть 2: Manifold learning и скрытые (latent) переменные

Reading time 11 min
Views 26K

Содержание






Для того, чтобы лучше понимать, как работают автоэнкодеры, а также чтобы в последствии генерировать из кодов что-то новое, стоит разобраться в том, что такое коды и как их можно интерпретировать.
Читать дальше →
Total votes 32: ↑32 and ↓0 +32
Comments 5

Автоэнкодеры в Keras, Часть 1: Введение

Reading time 11 min
Views 91K

Содержание



Во время погружения в Deep Learning зацепила меня тема автоэнкодеров, особенно с точки зрения генерации новых объектов. Стремясь улучшить качество генерации, читал различные блоги и литературу на тему генеративных подходов. В результате набравшийся опыт решил облечь в небольшую серию статей, в которой постарался кратко и с примерами описать все те проблемные места с которыми сталкивался сам, заодно вводя в синтаксис Keras.

Автоэнкодеры


Автоэнкодеры — это нейронные сети прямого распространения, которые восстанавливают входной сигнал на выходе. Внутри у них имеется скрытый слой, который представляет собой код, описывающий модель. Автоэнкодеры конструируются таким образом, чтобы не иметь возможность точно скопировать вход на выходе. Обычно их ограничивают в размерности кода (он меньше, чем размерность сигнала) или штрафуют за активации в коде. Входной сигнал восстанавливается с ошибками из-за потерь при кодировании, но, чтобы их минимизировать, сеть вынуждена учиться отбирать наиболее важные признаки.



Кому интересно, добро пожаловать под кат
Читать дальше →
Total votes 39: ↑39 and ↓0 +39
Comments 11

Уравнение теплопроводности в tensorflow

Reading time 9 min
Views 24K
Привет, Хабр! Некоторое время назад увлекся глубоким обучением и стал потихоньку изучать tensorflow. Пока копался в tensorflow вспомнил про свою курсовую по параллельному программированию, которую делал в том году на 4 курсе университета. Задание там формулировалось так:

Линейная начально-краевая задача для двумерного уравнения теплопроводности:

\frac{\partial u}{\partial t} = \sum \limits_{\alpha=1}^{2} \frac{\partial}{\partial x_\alpha} \left (k_\alpha \frac{\partial u}{\partial x_\alpha} \right ) -u, \quad x_\alpha \in [0,1] \quad (\alpha=1,2), \ t>0;

k_\alpha =
\begin{cases}
    50, (x_1, x_2) \in \Delta ABC\\
    1, (x_1, x_2) \notin \Delta ABC
\end{cases}

(\alpha = 1,2), \ A(0.2,0.5), \ B(0.7,0.2), \ C(0.5,0.8);

u(x_1, x_2, 0) = 0,\ u(0,x_2,t) = 1 - e^{-\omega t},\  u(1, x_2, t) = 0,

u(x_1,0,t) = 1 - e^{-\omega t},\ u(0, x_2, t) = 0,\  \omega = 20.

Хотя правильнее было бы назвать это уравнением диффузии.

Задачу тогда требовалось решить методом конечных разностей по неявной схеме, используя MPI для распараллеливания и метод сопряженных градиентов.

Я не специалист в численных методах, пока не специалист в tensorflow, но опыт у меня уже появился. И я загорелся желанием попробовать вычислять урматы на фреймворке для глубокого обучения. Метод сопряженных градиентов реализовывать второй раз уже не интересно, зато интересно посмотреть как с вычислением справится tensorflow и какие сложности при этом возникнут. Этот пост про то, что из этого вышло.

Численный алгоритм


Читать дальше →
Total votes 36: ↑34 and ↓2 +32
Comments 8

Information

Rating
Does not participate
Works in
Date of birth
Registered
Activity