• Алиса. Как Яндекс учит искусственный интеллект разговаривать с людьми

      В будущем, как нам кажется, люди будут взаимодействовать с устройствами с помощью голоса. Уже сейчас приложения распознают точные голосовые команды, заложенные в них разработчиками, но с развитием технологий искусственного интеллекта они научатся понимать смысл произвольных фраз и даже поддерживать разговор на любые темы. Сегодня мы расскажем читателям Хабра о том, как мы приближаем это будущее на примере Алисы – первого голосового помощника, который не ограничивается набором заранее заданных ответов и использует для общения нейронные сети.



      Несмотря на кажущуюся простоту, голосовой помощник – один из самых масштабных технологических проектов Яндекса. Из этого поста вы узнаете, с какими сложностями сталкиваются разработчики голосовых интерфейсов, кто на самом деле пишет ответы для виртуальных помощников, и что общего у Алисы с искусственным интеллектом из фильма «Она».

      Читать дальше →
    • На пути к естественному интеллекту

        Machine Learning с каждым днём становится всё больше. Кажется, что любая компания, у которой есть хотя бы пять сотрудников, хочет себе разработать или купить решение на машинном обучении. Считать овец, считать свёклу, считать покупателей, считать товар. Либо прогнозировать всё то же самое.

        image

        Формула проста: если цена внедрения ниже, чем ты платишь охраннику — ставь управляемый шлагбаум. Потери от бездельников выше стоимости внедрения биометрической системы учёта времени — внедряй. «Эксперт» берёт взятки за контроль качества продукта? Продублируй его системой контроля качества.

        Далеко не всегда можно оценить стоимость разработки. Но зачастую хватает даже порядка, чтобы начать работы и привлечь инвесторов.

        Но статья, скорее, не про это. Статья про специалистов по машинному обучению. Про бум специальности, про то, какие люди начинают приходить, как из единого, общего массива специалистов начинают вырисовываться профессии, про то, как сейчас решать ML-задачи.
        Читать дальше →
      • Нейросетевая игра в имитацию

          Здравствуйте, коллеги. В конце 1960-ых годов прошлого века Ричард Фейнман прочитал в Калтехе курс лекций по общей физике. Фейнман согласился прочитать свой курс ровно один раз. Университет понимал, что лекции станут историческим событием, взялся записывать все лекции и фотографировать все рисунки, которые Фейнман делал на доске. Может быть, именно после этого у университета осталась привычка фотографировать все доски, к которым прикасалась его рука. Фотография справа сделана в год смерти Фейнмана. В верхнем левом углу написано: "What I cannot create, I do not understand". Это говорили себе не только физики, но и биологи. В 2011 году, Крейгом Вентером был создан первый в мире синтетический живой организм, т.е. ДНК этого организма создана человеком. Организм не очень большой, всего из одной клетки. Помимо всего того, что необходимо для воспроизводства программы жизнедеятельности, в ДНК были закодированы имена создателей, их электропочты, и цитата Ричарда Фейнмана (пусть и с ошибкой, ее кстати позже исправили). Хотите узнать, к чему эта прохладная тут? Приглашаю под кат, коллеги.

          Читать дальше →
        • Смена пола и расы на селфи с помощью нейросетей


            Привет, Хабр! Сегодня я хочу рассказать вам, как можно изменить свое лицо на фото, используя довольно сложный пайплайн из нескольких генеративных нейросетей и не только. Модные недавно приложения по превращению себя в даму или дедушку работают проще, потому что нейросети медленные, да и качество, которое можно получить классическими методами компьютерного зрения, и так хорошее. Тем не менее, предложенный способ мне кажется очень перспективным. Под катом будет мало кода, зато много картинок, ссылок и личного опыта работы с GAN'ами.

            Читать дальше →
          • Алгоритмы построения пути для беспилотного автомобиля. Лекция Яндекса

              Яндекс уже некоторое время ведет разработку беспилотного автомобиля. Перед вами одна из первых технических лекций на эту тему. В направлении беспилотных автомобилей работают сотрудники Яндекса в разных городах, включая и Минск. Автор лекции Роман Удовиченко как раз из Минска — он руководит группой обработки дорожной ситуации. На сентябрьском Я.Субботнике Роман рассказал об одной из больших задач, стоящих перед его группой.


              Мы просто берем текущее положение машины, смотрим на путь, по которому мы хотели бы ехать, и плавно сворачиваем на этот путь, выруливаем на него. Получается достаточно просто. Но перемещение в городе связано с тем, что нужно соблюдать правила дорожного движения.

              Читать дальше →
            • Взлом визуальной системы: 11 оптических иллюзий в графическом дизайне

              • Перевод
              Глубока ли кроличья нора?

              image

              Сколько минут вам потребуется, чтобы понять в чем фишка?

              Фрэнсис Бэкон в 1620 году разделил источники человеческих ошибок, стоящих на пути познания, на четыре группы, которые он назвал «призраками» или «идолами» (лат. idola).

              • «Призраки рода» проистекают из самой человеческой природы, они не зависят ни от культуры, ни от индивидуальности человека. «Ум человека уподобляется неровному зеркалу, которое, примешивая к природе вещей свою природу, отражает вещи в искривлённом и обезображенном виде».
              • «Призраки пещеры» — это индивидуальные ошибки восприятия, как врождённые, так и приобретённые. «Ведь у каждого, помимо ошибок, свойственных роду человеческому, есть своя особая пещера, которая ослабляет и искажает свет природы».
              • «Призраки площади (рынка)» — следствие общественной природы человека, — общения и использования в общении языка. «Люди объединяются речью. Слова же устанавливаются сообразно разумению толпы. Поэтому плохое и нелепое установление слов удивительным образом осаждает разум».
              • «Призраки театра» — это усваиваемые человеком от других людей ложные представления об устройстве действительности. «При этом мы разумеем здесь не только общие философские учения, но и многочисленные начала и аксиомы наук, которые получили силу вследствие предания, веры и беззаботности». [Wikipedia]

              Под катом — наглядная демонстрация уязвимости нашего мозга к атакам через визуальный ввод. Представляю вам перевод статьи продуктового дизайнера и фронтэнд-разработчика Balraj Chana, про то как можно использовать/нейтрализовать эффект оптических иллюзий.
              Читать дальше →
            • Обзор топологий глубоких сверточных нейронных сетей

                Это будет длиннопост. Я давно хотел написать этот обзор, но sim0nsays меня опередил, и я решил выждать момент, например как появятся результаты ImageNet’а. Вот момент настал, но имаджнет не преподнес никаких сюрпризов, кроме того, что на первом месте по классификации находятся китайские эфэсбэшники. Их модель в лучших традициях кэгла является ансамблем нескольких моделей (Inception, ResNet, Inception ResNet) и обгоняет победителей прошлого всего на полпроцента (кстати, публикации еще нет, и есть мизерный шанс, что там реально что-то новое). Кстати, как видите из результатов имаджнета, что-то пошло не так с добавлением слоев, о чем свидетельствует рост в ширину архитектуры итоговой модели. Может, из нейросетей уже выжали все что можно? Или NVidia слишком задрала цены на GPU и тем самым тормозит развитие ИИ? Зима близко? В общем, на эти вопросы я тут не отвечу. Зато под катом вас ждет много картинок, слоев и танцев с бубном. Подразумевается, что вы уже знакомы с алгоритмом обратного распространения ошибки и понимаете, как работают основные строительные блоки сверточных нейронных сетей: свертки и пулинг.

                Читать дальше →
              • Нейрореволюция в головах и сёлах

                  В последнее время всё чаще и чаще слышишь мнение, что сейчас происходит технологическая революция. Бытует мнение, что мир стремительно меняется.



                  На мой взгляд такое и правда происходит. И одна из главных движущих сил — новые алгоритмы обучения, позволяющие обрабатывать большие объёмы информации. Современные разработки в области компьютерного зрения и алгоритмов машинного обучения могут быстро принимать решения с точностью не хуже профессионалов.

                  Я работаю в области связанной с анализом изображений. Это одна из областей которую новые идеи затронули сильнее всего. Одна из таких идей — свёрточные нейронные сети. Четыре года назад с их помощью впервые начали выигрывать конкурсы по обработке изображений. Победы не остались незамеченными. Нейронными сетями, до тех пор стоящими на вторых ролях, стали заниматься и пользоваться десятки тысяч последователей. В результате, полтора-два года назад начался бум, породивший множество идей, алгоритмов, статей.

                  В своём рассказе я сделаю обзор тех идей, которые появились за последние пару лет и зацепили мою тематику. Почему происходящее — революция и чего от неё ждать.

                  Кто лишится в ближайшие лет десять работы, а у кого будут новые перспективные вакансии.
                  Читать дальше →
                • Распознавание речи для чайников

                  • Tutorial

                  В этой статье я хочу рассмотреть основы такой интереснейшей области разработки ПО как Распознавание Речи. Экспертом в данной теме я, естественно, не являюсь, поэтому мой рассказ будет изобиловать неточностями, ошибками и разочарованиями. Тем не менее, главной целью моего «труда», как можно понять из названия, является не профессиональный разбор проблемы, а описание базовых понятий, проблем и их решений. В общем, прошу всех заинтересовавшихся пожаловать под кат!

                  Читать дальше →
                • Формирование музыкальных предпочтений у нейронной сети — эксперимент по созданию умного плеера

                  Данная статья посвящена работе по исследованию возможности обучить простейшую (относительно) нейронную сеть «слушать» музыку и отличать «хорошую» по мнению слушателя от «плохой».

                  Цель


                  Научить нейронную сеть отличать «плохую» музыку от «хорошей» или показать, что нейронная сеть на это неспособна (данная конкретная ее реализация).

                  image
                  Читать дальше →